Bonus Question 8 Due Wednesday, Nov. 6

The Z boson has a mass of 91.2 GeV and a width of 2.50 GeV. The cross section for $e^+e^- \rightarrow Z \rightarrow$ hadrons is well described by the relativistic Breit-Wigner formula

$$\sigma\left(e^{+}e^{-} \to Z \to \text{hadrons}\right) = \frac{\sigma_{0}s\Gamma_{Z}^{2}}{\left(s - m_{Z}^{2}\right)^{2} + s^{2}\Gamma_{Z}^{2} / m_{Z}^{2}}$$

where $\sigma_0 = 42$ nb is the hadronic cross section at the peak of the Z.

- 1. (7 pts) By how much does the Z tail shift R at $\sqrt{s} = 40$ GeV? (Note that this effect does not account fully for the Z contribution to R because the interference between $\mathcal{M}(e^+e^- \to Z \to \text{hadrons})$ and $\mathcal{M}(e^+e^- \to \gamma \to \text{hadrons})$ gives another contribution.)
- 2. (3 pts) What is the QCD correction to R at $\sqrt{s} = 40$ GeV? You will have to approximate α_s using the curve on p. 184 of M&S.