Paul Avery PHZ4390 Sep. 1, 2013

Homework 4

Due Monday, Sep. 23, 2013

- 1. Answer the following questions. The "elementary fermions" mentioned are leptons and quarks. You don't have to list antifermions.
 - a. (3 pts) List all elementary fermions that can participate in E&M interactions.
 - b. (3 pts) List all elementary fermions that can participate in strong interactions.
 - c. (4 pts) List all elementary fermions that can participate in weak interactions.
- 2. (15 pts) Indicate which if any conservation laws would be violated in the following reactions. For lepton number, see the discussion in Chapter 2 of M&S.

Reaction	Angular momentum	Lepton number	Baryon number	Energy
$\mu^- \rightarrow e^- v_e$				
$n \rightarrow p e^- \overline{v}_e$				
$n \rightarrow \pi^+ e^- \gamma$				
$\pi^- ightarrow au^- \gamma$				
$n \to \overline{p}e^+ v_e$				
$\Sigma^- \to \overline{p}\gamma$				
$\mu^- \rightarrow e^- \gamma$				
$\begin{array}{c} \mu^- \to e^- \gamma \\ \hline n \to \nu_\mu \gamma \end{array}$				
$n \to \pi^+ e^- \overline{v}_e$				
$\Lambda \to pK^-$				
$\Sigma^{*+} \to \Lambda \pi^+$				

- 3. These questions apply to the light spin 1/2 baryons.
 - a. (2 pts) Write the quark content of the 8 light spin 1/2 baryons.
 - b. (2 pts) Which baryons have the same quark content? Why are the masses so different?
 - c. (2 pts) Why is the lifetime of the Σ^0 so different than that of Σ^+ and Σ^- ?
 - d. (2 pts) Does the Σ^0 decay into $p\pi^-$ or $n\pi^0$? Have they been seen?
 - e. (2 pts) Why is the neutron lifetime so long?

- 4. Answer the following questions for the spin 3/2 baryons: Δ , Σ^* , Ξ^* and Ω^- . Use the PDG (Summary Tables of Baryons) as needed.
 - a. (2 pt) The particles are arranged in multiplets, as shown in the note on light hadrons. Why do the masses change from level to level?
 - b. (2 pts) Give one typical decay channel for each baryon (one per multiplet).
 - c. (2 pts) Using the quark structure of Δ^{++} and Ω^{-} baryons, draw Feynman diagrams for these decay modes.
 - d. (2 pts) Why is the lifetime of the Ω^{-} so different from the other spin 3/2 baryons?
 - e. (2 pt bonus) What Ω^- property would have to change (and by how much) to make its lifetime comparable to that of the other spin 3/2 baryons?
- 5. Use the Summary Tables of Baryons and Summary Tables of Mesons from the PDG.
 - a. (4 pts) What is the lightest charm baryon and its mass and lifetime (MeV, psec)? What is the lightest charm meson and its mass and lifetime (MeV, psec)?
 - b. (3 pts) What is the lightest bottom baryon and its mass and lifetime (MeV, psec)? What is the lightest bottom meson and its mass and lifetime (MeV, psec)?
 - c. (3 pts) Why would you expect the lightest charm baryon and lightest charm meson to always decay weakly?
- 6. Use the Summary Tables of Baryons from the PDG online.
 - a. (2 pts) Give the quark content of the lightest Σ_c^0 , Σ_c^+ and Σ_c^{++} baryons (these form a multiplet of mass ~2455 MeV). Each has a single charm quark.
 - b. (2 pts) Let Δ be the electromagnetic contribution to the mass between two quarks if they both had charge = *e*. Write the mass of each baryon in terms of the quark masses and Δ , similar to what we did in class (described in note on light hadrons).
 - c. (2 pts bonus) Use the mass splittings, $m_{\Sigma_c^{++}} m_{\Sigma_c^0}$ and $m_{\Sigma_c^+} m_{\Sigma_c^0}$ shown in the PDG table (the splittings are displayed separate from the masses because they are known more accurately) to estimate $m_d m_u$ and Δ . Are these values consistent with what we learned from the (n, p), $(\Sigma^-, \Sigma^0, \Sigma^+)$ and (Ξ^-, Ξ^0) multiplets that we did in class?
 - d. (2 pts bonus) Consider the two members of the Ξ_c multiplet, Ξ_c^0 and Ξ_c^+ . The mass splitting is shown under the Ξ_c^0 . What is your prediction of the splitting from (c)?