Homework 5

Due Monday, Sep. 30

1. A particle of mass m is in a one dimensional "box" of length L with infinitely high potential walls, i.e., $V(x)=0$ when $0 \leq x \leq L$ and $V(x)=\infty$ otherwise. Classically, a particle in such a box with some energy E (all kinetic) would bounce back and forth between the walls.
a. (1 pt) Write down Schrodinger's equation for an eigenstate of energy E in the region $0 \leq x \leq L$.
b. (1 pt) Show that $\psi(x)=A \cos (k x)+B \sin (k x)$ is a general solution to the equation (suppressing the time dependence for now). What is k in terms of E ?
c. (2 pts) Show that the boundary conditions imply $A=0$ and $k=n \pi / L$, where n is a positive integer.
d. (2 pts) What are the allowed energies?
e. (2 pts) Show that the normalized spatial solutions (total probability $=1$) can be written $\psi_{n}(x)=\sqrt{2 / L} \sin (n \pi x / L)$, where n is a positive integer. Why don't we include negative integers in the list of possible solutions?
f. (2 pts) Show that any two solutions $\psi_{n}(x)$ and $\psi_{m}(x)$ are orthonormal, i.e.

$$
\int_{-\infty}^{\infty} \psi_{n}^{*}(x) \psi_{m}(x) d x=\delta_{n m} .
$$

g. (2 pts) What is the form of a general energy eigenstate, including time dependence?
2. (Bonus: 3 pts) Plot using wxMaxima or the tool of your choice the probability distribution $|\psi(x)|^{2}$ of the ground state and the 2 next excited states of the particle in the 1-D box.
3. $(5 \mathrm{pts})$ What is the probability of a particle in the ground state being located somewhere in the interval $\frac{1}{2} L \leq x \leq \frac{4}{5} L$?
4. Consider a particle in a 3-D cube of sides L with one corner at the origin and sides parallel to the x, y, z axes. The potential energy is 0 in the cube and positive infinite outside it. This is called the 3-D box, a generalization of the 1-D box you considered in problem 1.
a. (2 pts) Write down Schrodinger's equation for an eigenstate of energy E in the region $0 \leq(x, y, z) \leq L$. This is just a generalization of the 1-D equation.
b. (2 pts) Show briefly that the normalized 3-D spatial solutions (total probability = 1) are $\psi(x)=\sqrt{8 / V} \sin \left(n_{x} \pi x / L\right) \sin \left(n_{y} \pi y / L\right) \sin \left(n_{z} \pi z / L\right)$, using 3 integers n_{x}, n_{y}, and n_{z}, and the volume V. This is easy if you worked out problem 1 .
c. (2 pts) What is the allowed energy for each solution?
d. (2 pts) Which solutions are "degenerate" (identical energies for different solutions)?
e. (2 pts) What are the 6 lowest energies and their degeneracies?
5. According to the Heisenberg uncertainty principle, $\Delta x \Delta p_{x} \geq \frac{1}{2} \hbar$ where Δx and Δp_{x} are the uncertainties in the measurements of x and p_{x}, respectively. Physicists typically approximate one of these uncertainties to get an estimate of the other. A typical problem involves estimating the ground state energy for a particle moving within a small spatial volume.
a. (4 pts) Make a good "guesstimate" for the uncertainty of the particle's position in the 1-D box to estimate its momentum uncertainty and use this to calculate an approximate ground state energy assuming non-relativistic motion. How does this compare to the ground state energy determined in problem 1(d)?
b. (3 pts) Use the uncertainty principle in 3-D (i.e., use all three dimensions) to estimate the kinetic energy (in MeV) of a proton that is confined to a nucleus of radius 2 fm . How does this compare to the typical binding energy of a nucleon?
c. (Bonus 3 pts) Use the uncertainty principle in 3-D to estimate the kinetic energy (in MeV) of an electron that is confined to a nucleon of radius 1 fm . (Note that it is ultrarelativistic so the mass can be ignored.) This problem has historical significance.

