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          Paul Avery 
          PHZ4390 
          Oct. 30, 2013 

Homework 9 
Due Wednesday, Nov. 6 

1. Resonant production involves a process of the form   ab→ X → 12 , where X is an intermedi-
ate particle with mass mX and width ΓX. The cross section involves two matrix elements and a 
propagator: 

   
M ∝M ab→ X( ) × propagator × M X → 12( ) . Since matrix elements normally 

satisfy time invariance, we write this as 
   
M ∝M X → ab( ) × propagator × M X → 12( ) .  We 

have to account for initial and final state spins and the spin of X. Using this and other QM 
rules, when we square the matrix element we get the following cross section vs   Ecm : 

  

σ ab→ X →12( ) = 2SX +1
2Sa +1( ) 2Sb +1( )

16π
s

Γ X
2 / 4

Ecm − mX( )2 + Γ X
2 / 4

BabB12  

where   s = Ecm
2 , Sa, Sb and SX are the spins of the incoming particles and X, respectively, and 

  Bab = Γab / Γ X  and   B12 = Γ12 / Γ X  are the branching fractions of X to a + b and 1 + 2, re-

spectively. For  e+e−  annihilation, the intermediate state X always has spin 1, the same as the 
photon, leading to the simplified equation 

  

σ e+e− → X →12( ) = 12π
s

Γ X
2 / 4

Ecm − mX( )2 + Γ X
2 / 4

BeeB12  

a. (5 pts) Evaluate 
 
σ e+e− → µ+µ−( )  in nb at the peak of the J/ψ and ψ(2S). Calculate 

the ratio of these cross sections to 
 
σ e+e− → µ+µ−( )  calculated without the reso-

nance. 

b. (5 pts) Evaluate 
 
σ e+e− → µ+µ−( )  in nb at the peak of the ϒ(1S), ϒ(2S), and ϒ(3S). 

Calculate the ratio of these cross sections to 
 
σ e+e− → µ+µ−( )  calculated without the 

resonance. 
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2. Refer to the previous problem. In real  e+e−  experiments, the beam energies are not exactly 
constant but fluctuate slightly, leading to an energy spread of the center of mass energy (a 
few MeV) that is much larger than the resonance widths of the lightest ψ and ϒ states (20 
keV to 300 keV). Thus one cannot directly measure the true cross section on the resonance 
peak. However, the integral 

  
σ dEcm∫  measured experimentally is the same as the true value. 

a. (5 pts) Show that measurements of 
  
σ tot dEcm∫  and  Bee  (using   B12 = 1  to get the to-

tal cross section  σ tot ) gives a measurement of ΓX. This method was used to actually 
determine the widths of the ψ and ϒ resonances. Note that, for narrow resonances, 

  s = Ecm
2  is approximately constant and the integral is effectively from –∞ to +∞. 

b. (3 pts) Using PDG data, calculate 
  
σ tot dEcm∫  (in nb-GeV) for the J/ψ and ϒ(1S) res-

onances. 

3. (5 pts) Why do experimental plots of the ψ and ϒ resonances show asymmetric peak shapes 
which are higher above the resonance than below the resonance? You can google the answer 
but be sure you understand it. 

4. Look up the parameters of the ψ and ϒ resonances in the PDG. 

a. (3 pts) Why are the widths of the J/ψ, ψ(2S), ϒ(1S), ϒ(2S) and ϒ(3S) resonances so 
small, i.e., why are they so “narrow”? 

b. (2 pts) Why is the width of the ϒ(4S) resonance so much larger than the widths of the 
lighter three ϒ resonances? 

c. (3 pts) Why is the ϒ(4S) width still so narrow compared with hadrons like the ρ, K* 
and Δ? 

5. (5 pts) What is the value of R predicted to be for Ecm = 6 GeV, 15 GeV, 20 GeV and 200 
GeV? Include the αs correction from QCD that we discussed in class. A discussion and a plot 
showing the dependence of αs vs energy can be found in M&S pp. 183-187. 

6. (5 pts) From the information in the PDG (use the summary tables for the gauge bosons), cal-
culate R at the peak of the Z0. 

7. (5 pts) What do the masses of the charmonium and bottomium systems help us measure? 
What additional information does the bottomonium system provide? 


