avery_tutorial_1

You can start typing in an input cell and use the "evaluate" key or just hit <SHIFT>-enter to evaluate it.
You can insert a new input cell in front of another cell by hovering over the top of the next input cell and clicking on the blue line that appears.

You can insert a new text cell in front of another cell and $<$ SHIFT $>$-click on the blue line.

```
#It's usually easier to use comments directly in the input cell
using a # before the comment.
4 + 5 #Here's an inline comment that's ignored by Sage during
evaluation
    9
#If you evaluate multiple Sage lines, only the output of the last
line is printed
4*2
sin(2.)
sqrt(2)
sqrt(2.)
    1.41421356237310
#If you want multiple commands on a line, separate them with a
semicolon ";".
#All outputs are shown, each on a separate line
4*2; sin(2.); sqrt(2); sqrt(2.)
8
0.909297426825682
    1.41421356237310
```

\#If you separate items by a comma, that generates a standard
Python tuple of values
\#(A tuple is a list that can't be changed)
4*2, sin(2.), sqrt(2), sqrt(2.)
$(8,0.909297426825682, \sqrt{2}, 1.41421356237310)$
\#You can always show intermediate output by using the print statement.
\#However, the output is not typeset as beautifully as when the Typeset box above is checked.
\#TeX must be installed to make typesetting work.
print sqrt(2)/2
sqrt(2)/2
$\frac{1}{2} / 2 * \operatorname{sqrt}(2)$
\#Sage treats expressions as exact, unless a decimal point is used, in which case the
\#accuracy is that of standard computer floating point representation, about 15-16 digits.
\#Look at the difference between these two expressions. The first is exact and the second is approximate.

```
1/2+1/3 + 1/4; 1/2. + 1/3 + 1/4
\(\frac{13}{12}\)
1.08333333333333
```

\#Or look at the following expressions.
\# Note that 2 - sqrt(2)^2 is 0 exactly
\# However, 2 - sqrt(2.)^2 is not exactly zero
sqrt(2); sqrt(2.); 2-sqrt(2)^2; 2-sqrt(2.)^2; $\operatorname{sin(1);~sin(1.)~}$
$\sqrt{2}$
1.41421356237310

0
$-4.44089209850063 \times 10^{-16}$
$\sin (1)$
0.841470984807897
\#You can get the numerical value of any expression using $n()$, which provides standard
\#floating point precision. In the following, $n()$ is used as suffix, where it is
\#called an "object method"
pi.n(); e.n(); (sqrt(2)).n()
3.14159265358979
2.71828182845905
1.41421356237310
\#n() can also be used as an ordinary function
n(pi); $n(e) ; ~ n(s q r t(2))$
(3.14159265358979, 2.71828182845905, 1.41421356237310)
\#You can also get an arbitrary number of digits from $n()$ if they are specified
pi.n(digits=50); e.n(digits=30); n(sqrt(2), digits=60)
\#Sage has standard math constants, including $I=\operatorname{sqr}(-1)$. \#Google "Euler's constant" to find how it is defined.
pi; e; I; 5 + 3*I; euler_gamma; euler_gamma.n(); (5+3*I) * (53*I)
π
e
i
$3 i+5$
γ_{E}
0.577215664901533

34
\#+infinity is represented by oo
○○; -о०; tan(pi/2)
$+\infty$
$-\infty$
∞
\#Exponentiation is performed with either the ** or ^ operator
5**4; 5^4;
625
625
\#Sage has all the standard math and trig functions
exp(3); sqrt(5); sin(2); cos(2); tan(2); arcsin(1/2);
$\arccos (1 / 2) ; \arctan (00)$
e^{3}
$\sqrt{5}$
$\sin (2)$
$\cos (2)$
$\tan (2)$
$\frac{1}{6} \pi$
$\frac{1}{3} \pi$
$\frac{1}{2} \pi$
\#Even the hyperbolic trig functions are supported
sinh(2); cosh(2); tanh(2); $\operatorname{arcsinh(1/2);~} \operatorname{arccosh(1/2);~}$ arctanh (1)
$\sinh (2)$
$\cosh (2)$
$\tanh (2)$
$\operatorname{arcsinh}\left(\frac{1}{2}\right)$
$\operatorname{arccosh}\left(\frac{1}{2}\right)$
$+\infty$
\#Combinatoric related quantities such as factorial and binomial are supported
\#binomial(N,n) $=N!/[n!*(N-n)!]$
factorial(6); binomial(6, 3)
720
20
\#The factor() function factors integers or algebraic expressions. \#It can be used as a global function or object method
1035.factor(); factor(1048764);
$3^{2} \cdot 5 \cdot 23$
$2^{2} \cdot 3 \cdot 17 \cdot 53 \cdot 97$
$\left(x^{\wedge} 2-5 * x+6\right) . f a c t o r() ;$ factor $\left(x^{\wedge} 4+x^{\wedge} 3-38 * x^{\wedge} 2-8 * x+240\right)$ $(x-2)(x-3)$
$\left(x^{2}-8\right)(x+6)(x-5)$
\#factor() can also be used to simplify algebraic fractions
$\mathrm{f}=3+1 /(\mathrm{x}+1)+1 /(\mathrm{x}-1) ; \mathrm{f} ; \mathrm{f} . \mathrm{factor}()$
$\frac{1}{x+1}+\frac{1}{x-1}+3$
$\frac{3 x^{2}+2 x-3}{(x+1)(x-1)}$
\#expand() is the opposite of factor
expand $\left.\left(\mathrm{x}^{\wedge} 2-8\right) *(\mathrm{x}+6) *(\mathrm{x}-5)\right)$; \quad expand $\left.(\mathrm{x}+1)^{\wedge} 6\right)$
$x^{4}+x^{3}-38 x^{2}-8 x+240$
$x^{6}+6 x^{5}+15 x^{4}+20 x^{3}+15 x^{2}+6 x+1$
\#x is the only predefined symbolic variable that can be used in expressions.
\#New symbolic variables are defined using the var() function
var("y $z N n "$ \# n (factorial(N); binomial(N, n)
N !
$\binom{N}{n}$
\#Use the subs() method to evaluate an expression with particular values for the variables
factorial(N).subs(N=10); exp(-x*y).subs(x=0.60, $y=2.5)$
\#You can also use trig_simplify() to simplify trig expressions
$\mathrm{f}=\sin (\mathrm{x})^{\wedge} 2+\cos (\mathrm{x})^{\wedge} 2$
f; f.trig_simplify(); (tan(x)^4).trig_simplify() $\cos (x)^{2}+\sin (x)^{2}$
1
$\frac{\sin (x)^{4}}{\cos (x)^{4}}$

\#trig_reduce replaces $\sin (x)^{\wedge} n$ and $\cos (x)^{\wedge} n$ with terms involving
sin $\left(n^{*} x\right)$ and $\cos (n * x)$
\#It can only be used as an object method, for some reason
(sin(x)^4).trig_reduce(); (cos(x)^7).trig_reduce()
$\quad \frac{1}{8} \cos (4 x)-\frac{1}{2} \cos (2 x)+\frac{3}{8}$
$\frac{1}{64} \cos (7 x)+\frac{7}{64} \cos (5 x)+\frac{21}{64} \cos (3 x)+\frac{35}{64} \cos (x)$

