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1. General Statements

This paper is the first of four documents I am writing on general fitting theory, par-

ticularly as applied to high energy physics experiments. I have several reasons for doing

this. First, I want to provide a general introduction to the subject using matrix notation for

people who have not done much fitting, or who are not familiar with the very elegant matrix

formulation of least squares fitting theory. Second, I want to demonstrate how constraints,

even those that introduce new variables, can be incorporated into the fit (using Lagrange

multipliers) and how they affect the error calculation. Third, I want to show some new tech-

niques I have developed that greatly extend the usefulness of least squares theory. Finally, I

wanted to provide a single reference for people who use least squares techniques frequently

but who are unable to find practical algorithms such as the ones covered here in standard

books and articles on probability and statistics.

This document replaces an earlier note, CBX 87-38, that I released in 1987. The older

note served as an introduction to least squares theory, especially in the use of constraints,

and was supposed to be the first of a three part series. Unfortunately, it didn’t work out

that way since the followup notes were never released (although they had been written).
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Since that time I have developed some new factorization algorithms for applying con-

straints and inverting large matrices that I felt are important enough to warrant inclusion.

These methods, and the ones discussed in the original paper, have particular relevance to

kinematic fitting, a favorite topic of mine. One important consequence is that it should be

possible to speed up the process of kinematic fitting so that it becomes a more practical tool

for high energy physics analysis. In fact, I am writing a kinematic fitting package that uses

the algorithms discussed in this article. It is discussed in a separate writeup.

My plan is to provide in in the first paper some general formulas for fitting, with and

without constraints. These formulas are used extensively in fitting data to histograms,

determining track parameters from hit information and kinematic fitting. In the second note,

I will discuss how to exploit least squares fitting to determine systematic detector effects,

which are either too small to be determined in a single event by fitting, or too intertwined

with other effects to be reliably estimated. In the third paper, I will present an analysis of

how track parameter errors due to multiple scattering can be treated exactly, although the

best possible parameters are not obtained. The technique, which I call Non-optimal Least

Squares fitting, can be applied to any problem in which correlations among large numbers

of data points prevents a direct attack by traditional methods. Finally, in the fourth article

I will discuss fitting techniques specific to kinematic fitting, including ways to factorize the

fits and improve execution speed.

I have no intention of making this series of notes a complete reference on fitting theory.

For the most part I assume Gaussian errors and do not worry about fitting low statistics

histograms, which requires special techniques. Consequently, I omit discussion of how con-

fidence intervals, upper limits and asymmetric errors are calculated.

A word on notation. Throughout this series lowercase bold letters (x, y) always refer to

vector quantities and uppercase letters (A, B) represent matrix quantities. The symbol V

always refers to a covariance matrix.
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2. Simple Least Squares Fitting

Let’s start off with an easy problem in least squares fitting that demonstrates the basic

principle and which also illustrates the compactness and power of matrix notation. Sup-

pose we have n independently measured data values yl which we believe are functions of

m unknown variables αi, where m ≤ n. In other words, we are hypothesizing the relation

yl = fl(αi). Note that the functions fl depend on the data point in question, as can be seen

easily by thinking of the index l as tracking the “independent variable” x at each point.

Since each yl is a measured quantity with a standard deviation σl, the equation yl =

fl(αi) cannot be satisfied exactly if m < n. However, we can require that the equation be

satisfied “as closely as possible” by defining the χ2 statistic, where

χ2 =
∑

l

(yl − fl(α))2

σ2
l

,

and demand that the values of αi be chosen so as to minimize χ2. Note that χ2 is merely the

sum of the squares of the “misses” weighted by the uncertainty σl of each data item (each

of which is, for now, independent of all others) so small values are better than large ones.

Let me expand a little on what is going on here. We assume that each measurement

yl has a measurment error σl. If the errors are Gaussian and the expected value for the

measurement is fl(α) then the probability density function (pdf) for the measurements can

be written

g(yl) =
1√
2πσl

exp [−(yl − fl)
2/2σ2

l ],

where the normalization is chosen to make
∫

∞

−∞
gl(yl)dyl = 1. The joint pdf for n measure-

ments is then

g(y1 . . . yn) =
∏

l

1√
2πσl

exp [−
∑

l

(yl − fl)
2/2σ2

l ]

=
∏

l

1√
2πσl

exp (−χ2/2)

It is clear that maximizing this pdf is equivalent to minimizing χ2. The adjustment of the

parameters α to achieve the maximization of the pdf is called the “maximum likelihood”

method, and can be carried out even when the pdf is non-Gaussian, e.g., Poisson statistics.
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The requirement that the χ2 function be at a minimum is usually guaranteed by the m

relations

∂χ2

∂αi
= 0.

Unfortunately, no general method exists for solving these m equations since fl and its first

derivatives can in general be highly nonlinear functions of the parameters αi. Often, however,

the functions vary slowly enough so that one can expand to first order about an approximate

solution, viz.

fl(α) = fl(αA) +
∑

i

(αi − αiA)
∂fl(α)

∂αi
αA

≡ flA +
∑

i

Aliηi.

Under this approximation, the χ2 function can be written

χ2 =
∑

l

(yl − flA −∑i Aliηi)
2

σ2
l

≡
∑

l

(∆yl −
∑

i Aliηi)
2

σ2
l

.

Under very general conditions it can be proved that the parameters ηi = αi − αiA obtained

by minimizing this linearized version of the χ2 function are unbiased and have minimum

variance σ2
αi

, i.e., one cannot find a better set of parameters.

The minimization conditions, ∂χ2/∂αi = 0, can be written in this linear approximation

as
∑

l

AliAlj

σ2
l

ηj =
∑

l

Ali

σ2
l

∆yl,

where 1 ≤ i, j ≤ m. Defining the symmetric matrix on the LHS as

VA ij =

(

∑

l

AliAlj/σ
2
l

)

−1

,

we get the solution

ηi =
∑

j,l

VA ij

Alj∆yl

σ2
l

.

Surely, you say, there must be a better way of writing these equations without worrying

about all the indices. To see how this might be done, let’s go back to the linearized χ2
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equation and write it in matrix form:

χ2 = (∆y − Aη)tV−1
y (∆y − Aη)

where A is the matrix of coefficients defined above and V−1
y , η and y are given by the

expressions

V−1
y =













1/σ2
1 0 · · · 0

0 1/σ2
2 · · · 0

...
...

. . .
...

0 0 · · · 1/σ2
n













, η =













η1

η2

...

ηm













, y =













y1

y2

...

yn













.

V−1
y , the inverse of the measurement covariance matrix, is called the “weight matrix”.

Taking the partial derivative with respect to the parameters η we obtain the m equations

AtV−1
y (∆y − Aη) = 0,

which can be written

AtV−1
y Aη = AtV−1

y ∆y.

Defining as before VA = (AtV−1
y A)−1, we finally obtain the m equations

η = VAAtV−1
y ∆y,

which is a much more understandable and meaningful expression than the previous one. The

parameters α can be determined from α = αA + η. Note that V−1
y has dimensions of n× n,

A is of size n × m, and VA is of size m × m. The advantage of the matrix notation is that

we can easily put in the indices by inspection after the equation is written in compact form.

Sometimes it is useful to calculate the “residuals” r = ∆y − Aη = y − fA(αA) − Aη,

which are merely the differences of the measurements and predicted values. The χ2 can then

be written χ2 = rtV−1
y r =

∑

l r
2
l /σ

2
l .
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3. Calculation of Errors: The Covariance Matrix

Obtaining a solution for a set of parameters is not enough: we also want to know

the errors of the parameters and their correlations with one another. This information is

contained in the so-called covariance matrix, which is defined as

cov(xi, xj) ≡ Vx ij = 〈(xi − x̄i)(xj − x̄j)〉 ≡ 〈δxiδxj〉,

where the symbol 〈〉 refers to a weighted average taken over all possible values of the enclosed

expression. Note that the ith diagonal entry in the covariance matrix is merely σ2
xi

, the square

of the standard deviation of xi. The covariance matrix can be written in matrix notation as

Vx = 〈δxδxt〉. For example, the covariance matrix for the (independent) data values yl is

Vy = 〈δyδyt〉 = diag(σ2
i ).

This explains how I chose the notation for the weight matrix V−1
y in the previous section.

In general the covariance matrix V is related to another matrix called the correlation matrix

ρ. The elements ρij are computed from

ρij =
Vij

√

ViiVjj

=
Vij

σiσj
.

The element ρij (i 6= j) is called the ij correlation coefficient and satisfies the inequality

−1 ≤ ρij ≤ 1.

Finding the errors in the parameters η is now straightforward. Starting with the solution

η = VAAtV−1
y ∆y we obtain

Vα = Vη = 〈δηδηt〉 = VAAtV−1
y 〈δyδyt〉V−1

y AVA = VAAtV−1
y VyV

−1
y AVA = VA,

and the errors are σηi
=
√

Vη ii =
√

VA ii. I have used δ∆y = δy and the definition

VA = (AtV−1
y A)−1. The fact that Vη = VA might seem surprising, but it turns out that

the least squares technique, with or without constraints, always yields an equation of the

form V−1η = Cy and gives Vη = V.
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Once a parameter error is known, it is easy to figure out for Gaussian errors the prob-

ability that the parameter will fall within ±1σ, ±2σ etc. The following table gives some

typical values.

# standard deviations Probability to fall in ±nσ

0.5 0.3830

1.0 0.6826

1.5 0.8664

2.0 0.9554

2.5 0.9876

3.0 0.9974

3.5 0.9996

Of course, in real life measurement errors are rarely distributed like Gaussians and usu-

ally have some significant non-Gaussian tail. However, the Central Limit Theorem usually

guarantees that the estimated parameters will be more Gaussian than the estimated mea-

surements, provided that there are a sufficient number of measurements,

Given a set of parameters and their estimated errors, what assurance do we have that

the fit is any good? To answer this question, we note that the entire least squares procedure

is concerned with minimizing the χ2, so the final value of χ2 provides a measure of how well

the fit worked. Traditionally, one defines a “confidence level” which is the probability that a

fit will have a χ2 greater than or equal to the value we found from the fit. Mathematically,

we write

C.L. =

∞
∫

χ2

f(x)dx,

where f(χ2) is the χ2 probability distribution function.

For Gaussian errors we can calculate f(χ2) straightforwardly. The χ2 can be written in

the compact form

χ2 = ∆ytV−1
y ∆y − ηtV−1

η η,

which is the difference of two positive definite forms having n and m terms, respectively. It
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is straightforward to show that if the y are distributed as Gaussians (correlated), they can

be rotated and rescaled in such a way that the χ2 can be written in the manifestly positive

form χ2 = w2
1 + w2

2 + · · · + w2
ν, where the wi are independent Gaussians having unit error

and zero mean. ν = n − m is called the number of “degrees of freedom” of the fit. In that

case, applying the Jacobian transformation to the joint pdf with
√

χ2 as the “radius” and

ν − 1 angular variables over which we integrate, we find the χ2 probability distribution to

be

f(χ2) =
(χ2)

ν−2

2 e−
1

2
χ2

2
ν

2 Γ(ν/2)
.

This distribution has χ2 = ν and σχ2 =
√

2ν. For large ν, the distribution of χ2/ν is itself

approximately Gaussian with mean 1 and standard deviation
√

2/ν, so that one can estimate

the confidence level from the number of standard deviations χ2/ν exceeds 1.

4. Fitting with Correlated Errors

It frequently happens that the data measurements yl are not independent of each other,

so that movement of a particular measurement will cause the simultaneous adjustment of

other measurements. A particularly odious example of this is multiple scattering, in which

a single scattering event at a particular point affects the drift distance measurements at all

subsequent points. In this case the deviation of the measurements from the original track

will have an independent component due to random measurement errors and a correlated

component due to the presence of the multiple scattering event.

Correlated data measurements can be accounted for in a simple way in the least squares

algorithm. The χ2 function, obtained from section 2, can be written as

χ2 = (∆y − Aη)tV−1
y (∆y − Aη),

where the “weight” matrix V−1
y should now be considered to be the inverse of the co-

variance matrix Vy = 〈δyδyt〉, and reduces to the familiar diagonal form for independent

measurements. The Gauss-Markov theorem guarantees that the parameters η obtained by

minimizing this χ2 function are both unbiased and have minimum variance, just as in the
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case of independent measurements. The solution for the parameters η = α − αA and their

covariance matrix is then exactly the same as before, η = VAAtV−1
y ∆y, Vη = VA. The

only difficulty is practicality: it is frequently too time consuming to invert Vy to get the

matrix V−1
y . In the third paper in this series I will show a way around this difficulty.

5. Fitting with Constraints

Many times it is useful to fit a set of data points to parameters whose values must satisfy

constraint equations. In general, one uses constraints to impose “external knowledge”of a

physical process to govern the behavior of the fit, thereby forcing the fit to conform to

physical principles which are not known by the internal variables of the fit.

For example, forcing 2 tracks to come from a common vertex or to be back- to-back are

common uses of constraints. In the first case, the external knowledge is the fact that the

tracks had to emerge from a single space-time point (disregarding secondary vertices). In

the second, knowledge of the kinematics of two body decays constrains the behavior of the

fit.

When constraints are applied, the effective number of unknowns in the fit is reduced

by the number of constraints. This can be seen in a trivial way by writing the chisquare

equation (to be minimized) with m parameters together with the r constraint equations. By

substituting the r constraints in the χ2 equation one is left with an expression having m− r

unknowns. In the second example above, for instance, the effective number of parameters is

reduced from 10 to 10 − 5 = 5 because of the 5 back-to-back constraints.

Although the elimination of unknowns by direct substitution is popular and fast, there are

certain tradeoffs. First of all, the substitution can only be performed when one has relatively

simple constraints. In many cases the substitution is impossible because the equations cannot

be solved analytically for the variables to be substituted. Secondly, the resulting covariance

matrix is calculated only for the reduced set of variables and it is sometimes difficult to

extend it to the more meaningful set of original parameters by propagation of errors. In

short, the somewhat reduced execution times of substitution algorithms is offset by the

special computer code that must be written for each case. Moreover, the addition of new

constraints is accompanied by even more program rewrites, which inevitably result in lost

time and increased errors.

9



The method of Lagrange multipliers solves these problems by the rather counterintuitive

notion of introducing more variables into the fit. Let the r constraint equations be written

H(α) = 0. Expanding about αA as before, we obtain the linearized equations H(αA)+ (α−
αA)∂H(αA)/∂α ≡ Dη + d = 0, using obvious notation, where D is a r ×m matrix and d is

a vector of length r. The constraints are imposed by adding a new term to the χ2 equation,

χ2 = (∆y − Aη)tV−1
y (∆y − Aη) + 2λt(Dη + d),

where λ, a vector of length r, is the set of Lagrange multipliers. The solution for η is obtained

by setting the partial derivatives with respect to η and λ to 0. The ∂/∂λ = 0 equation

generates the constraint conditions. The solution to the equations shows that η is equal to

η0 plus a term proportional to λ, i.e. the constraints “pull” the parameters η away from

their unconstrained values η0. This result suggests that the solution can be “factored” into

two pieces: (1) solving the unconstrained equations for η0 and (2) applying the constraints

to solve for η in terms of η0. Since all the uncertainties in the data measurements have been

absorbed into Vη0
, we don’t expect to see any explicit reference to A or VA when constraints

are applied. Our intuition is correct as can be seen from the fact that the full χ2 can be

written (after a little manipulation)

χ2 = (∆y − Aη0)
tV−1

y (∆y − Aη0) + (η − η0)
tV−1

η0
(η − η0) + λt(Dη + d).

The first term is constant and is just the χ2 for the initial unconstrained fit. Our preferred

method then is to perform the fit initially without constraints and then add the constraints

after the fact using the new χ2

χ2 = (η − η0)
tV−1

η0
(η − η0) + 2λt(Dη + d).

The minimization conditions ∂χ2/∂η = 0 and ∂χ2/∂λ = 0 yield the equations

V−1
η0

(η − η0) + Dtλ = 0

Dη + d = 0,
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which, when solved, yield

λ = VD(Dη0 + d) ≡ VDα (α = Dη0 + d)

η = η0 − Vη0
Dtλ

VD = (DVη0
Dt)−1

Vλ = VD

Vη = Vη0
− Vη0

DtVλDVη0
.

χ2 = λtV−1

D λ = αtVDα = λtα = αtλ

The expression for the χ2 shows quite clearly that there are r degrees of freedom, one per

constraint.

This factorization process of applying constraints to previously fitted parameters (after

all the uncertainities have been absorbed in the parameter covariance matrix) will be used

frequently in this series of papers. I will show later in this document that one can even

factorize the constraints in the sense that the parameters fitted using one set of constraints

can be used as input to a second set to obtain the same overall solution as would have been

obtained from using the constraints all at once. This has application to kinematic fitting.

6. Solving for Unknown Parameters in the Constraint Equations

1. Direct solution

The constrained fitting technique derived in the previous section can be generalized to

the case in which the constraint equations involve new unknown parameters which must be

calculated in addition to those that appear directly in the χ2 function. A common example

is the fitting of several tracks under the constraint that they intersect at an unknown space

point.

Instead of applying the Lagrange multiplier technique directly on the original χ2 function,

we shall use the two step procedure developed in the last section. We first perform the fit

without constraints and get the solution η0 = VAAtV−1
y ∆y with the covariance matrix
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Vη0
= VA. The new χ2 equation written in terms of η and including the constraints is then

χ2 = (η − η0)
tV−1

η0
(η − η0) + 2λt(Dη + Ez + d),

where z contains the undetermined parameters (q of them) and E is a r × q matrix. Mini-

mizing this function with respect to η, λ and z yields the equations

V−1
η0

(η − η0) + Dtλ = 0

Dη + Ez + d = 0

Etλ = 0.

Solving these equations is somewhat more tedious than in the previous section since

more matrix manipulation is involved. It can be written

λ0 = VD(Dη0 + d) ≡ VDα0 (α0 = Dη0 + d)

z = −VEEtλ0

λ = λ0 + VDEz = VD(Dη0 + Ez + d) ≡ VDα

η = η0 − Vη0
Dtλ

χ2 = λtV−1

D λ = λt
0V

−1

D λ0 − ztV−1
z

z

= αtVλα = λtα = αtλ = λt
0α = λtα0

where the auxiliary matrices are defined as follows

VD = (DVη0
Dt)−1

Vz = VE = (EtVDE)−1

Vλ = VD − VDEVEEtVD

Vη = Vη0
− Vη0

DtVλDVη0

cov(z, η) = −VEEtVDDVη0

The operations should be performed in the following order (assuming that η0 and Vη0

are available from a previous unconstrained fit):

1. Calculate VD and VE
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2. Calculate λ0

3. Calculate z

4. Calculate λ

5. Calculate η

The number of degrees of freedom is clearly r − q, the number of constraints minus the

number of unknown parameters which have to be determined.

2. Huge error method

There is a clear parallel between the above equations and those derived in the previous

section without the new variables z. The only difference is that z have no prior covariance

matrix and so must be determined by a special procedure. However, it is clear that we do

not change the problem by adding to the χ2 the term ztL−1z, where L corresponds to huge

errors in z. Since both η and z have a prior covariance matrix, the simple algorithm derived

in the last section can be used to solve for η and z. This must give the same answer as the

method used in this section in the limit L → ∞.

We introduce the “huge error” algorithm by adding a z covariance term (corresponding

to huge errors) to the χ2 and then rewrite the χ2 in terms of new variables w:

χ2 = (η − η0)
tV−1

η0
(η − η0) + ztL−1z + 2λt(Dη + Ez + d)

≡ (w − w0)
tV−1

w0
(w − w0) + 2λt(D′w + d),

where

w =

(

η

z

)

, D′ = (D E ) and Vw0
=

(

Vη0
0

0 L

)

,

and w0 =

(

η0

0

)

. Since the expanded variables w have an initial covariance matrix the

solution for w and Vw can be taken straight from Section 5:

λ′ = VD′(D′η0 + d) ≡ VD′α0 (α0 = Dη0 + d)

w = w0 − Vw0
D′tλ′

VD′ = (D′Vw0
D′t)−1 = (DVDDt + ELEt)−1

Vw = Vw0
− Vw0

D′tVD′D′Vw0

χ2 = λ′tV−1

D′ λ
′ = αt

0VD′α0 = λ′tα0 = αt
0λ

′.
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The solutions for η, z, Vη, cov(z, η) and Vz can either be extracted from the full solution

above using

w =

(

η

z

)

, Vw =

(

Vη cov(z, η)

cov(η, z) Vz

)

,

or by direct calculation:

η = η0 − Vη0
Dtλ′

z = −LEtλ′

Vη = Vη0
− Vη0

DtVD′DVη0

Vz = L − LEtVD′EL

cov(z, η) = −LEtVD′DVη0
.

It can be shown by expanding VD′ using the Woodbury inversion algorithm (see Ap-

pendix) that the huge error method in the limit L → ∞ gives exactly the same solution as the

direct technique. Moreover, it is simpler to implement on a computer and it reuses the same

algorithm derived for the case where no new variables were introduced in the constraints.

One must be careful not to make the errors L too large, because the parameters and their

covariance matrix are obtained by subtracting very large numbers, causing a significant loss

of precision. One should almost certainly use double precision when applyng this method.

7. Factorization of Constraints

Earlier in this paper I showed that when constraints are applied to a fit, it is possible

to factor the problem into two parts: (1) obtain the unconstrained parameters by solving

the fit without constraints and (2) apply the constraints to these unconstrained parameters

to get the final parameters. In this section I will show that the idea of factorization can be

generalized so that constraints themselves can be applied sequentially.

The theorem to be proved can be stated as follows. Suppose we have a set of m param-

eters η0 with covariance matrix Vη0
and a set of r constraints that we want to apply (see

Section 5). We divide the r constraints into disjoint subsets containing r1, r2,. . . rn elements.

If each of these constraint subsets are applied sequentially, using the parameters and covari-

ance matrix of the previous step and generating a new set of parameters and covariance
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matrix for the next step, then the final set of parameters η and its covariance matrix Vη is

the same as would have been obtained by applying simultaneously all r = r1 + r2 + · · ·+ rn

constraints to the initial parameters.

In a sense, this theorem must be true because the final answer shouldn’t depend on the

fact that we applied the constraints sequentially rather than simultaneously. The proof is

somewhat interesting, however, so I’ll go through it.

First, I’ll divide the constraints into two pieces and apply them sequentially. The proof

for two pieces is sufficient since each piece can be subdivided as needed. Write the χ2 as (see

Section 5)

χ2 = (η − η0)
tV−1

η0
(η − η0) + 2λt(Dη + d).

where

D =

(

D1

D2

)

, d =

(

d1

d2

)

and λ =

(

λ1

λ2

)

.

Let’s first find the intermediate parameters η1 by applying the constraints D1η1 +d1 = 0 to

χ2
1 = (η − η0)

tV−1
η0

(η − η0) + 2λ′t(D1η + d1).

The solution from Section 5 is

λ′

1 = VD1
(D1η0 + d1) ≡ VD1

α1

η1 = η0 − Vη0
Dt

1λ
′

1

VD1
= (D1Vη0

Dt
1)

−1

Vη1
= Vη0

− Vη0
Dt

1VD1
D1Vη0

χ2
1 = λ′t

1V
−1

D1
λ′

1 = λ′t
1 α1.

The parameters η1 and covariance matrix Vη1
are then used as input for the constraints
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D2η2 + d2 = 0. The solution is similar to the one above, i.e.,

λ′

2 = VD2
(D2η1 + d2) ≡ VD2

α′

2

α′

2 = α2 − Vη0
Dt

1VD1
α1 (α2 = D2η0 + d2)

η2 = η1 − Vη1
Dt

2λ
′

2,

VD2
= (D2Vη1

Dt
2)

−1

Vη2
= Vη1

− Vη1
Dt

2VD2
D2Vη1

χ2
2 = λ′t

2V
−1

D2
λ′

2 = λ′t
2 α′

2.

Using the above two sets of equations we can express the solution for η2 directly in terms

of η0 and Vη0
:

η2 = η0 − Vη0
Dt

1VD1
α1 − (Vη0

− Vη0
Dt

1VD1
D1Vη0

)Dt
2VD2

(α2 − Vη0
Dt

1VD1
α1)

χ2 = χ2
1 + χ2

2,

or, using the vector α =
(

α1

α2

)

η2 = η0 −

Vη0
(Dt

1 Dt
2 )

(

VD1
+ VD1

D1Vη0
Dt

2VD2
Vη0

Dt
1VD1

−VD1
D1Vη0

Dt
2VD2

−VD2
D2Vη0

Dt
1VD1

VD2

)(

α1

α2

)

Compare this equation to the one derived in Section 5 for the constraints applied simul-

taneously. The solution can be written as

η = η0 − Vη0
DtVDα

= η0 − Vη0
(Dt

1 Dt
2 )

(

D1Vη0
Dt

1 D1Vη0
Dt

2

D2Vη0
Dt

1 D2Vη0
Dt

2

)

−1(

α1

α2

)

.

However, the inverse of the matrix in parentheses is just the large matrix in the sequential

solution, as can be verified by the factorization matrix inversion algorithm discussed in the

Appendix. This proof even works when there are unknown parameters z in the constraint

equations, since, as we showed in Section 6, the presence of new parameters can be cast into

a form without the variables using an appropriate limit process.
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The fact that constraints can be applied one after the other is very useful for kinematic

fitting. Consider the decay sequence

B− → D∗0π−,

D∗0 → D0π0,

D0 → K−π+,

π0 → γγ,

and assume that we want to apply mass constraints to the B−, D∗0, D0 and π0 and the

beam energy constraint to the B−. The four decay processes can be fit simultaneously to

give an overall χ2. A more sensible approach, however, would be to fit, in order, the π0,

D0 and D∗0 and then use these particles in the fit for the B− with the remaining mass and

beam energy constraint. The final χ2 is just the sum of the χ2s for the individual fits. This

allows us to reuse the particles in other fits and to develop standard procedures for fitting

lower level particles.

8. Simple Application of Unconstrained Track Fitting

In this section I will apply some of the ideas discussed so far to a “toy” track fitting

problem. Consider a set of n planar drift chambers arrayed along the x axis in a magnetic

field. If the momentum is not too small, the equation of motion is y = a+ bx+ cx2, where a,

b and c are, respectively, the offset, slope and half the curvature of the track. The equation

of motion is linear in these 3 parameters.

Since the problem is linear, we can set the parameters to 0 initially (αA = 0, fA =

0) because convergence is guaranteed in a single iteration. The solution is given by η =

VAAtV−1
y y. The matrices are calculated as follows.

A =













1 x1 x2
1

1 x2 x2
2

...
...

...

1 xn x2
n













17



η =







a

b

c






, y =













y1

y2

...

yn













V−1
y =













1/σ2
1 0 · · · 0

0 1/σ2
2 · · · 0

...
...

. . .
...

0 0 · · · 1/σ2
n













VA = (AtV−1
y A)−1 =







∑

l 1/σ
2
l

∑

l xl/σ
2
l

∑

l x
2
l /σ

2
l

∑

l xl/σ
2
l

∑

l x
2
l /σ

2
l

∑

l x
3
l /σ

2
l

∑

l x
2
l /σ

2
l

∑

l x
3
l /σ

2
l

∑

l x
4
l /σ

2
l







−1

η = VA







1 1 · · · 1

x1 x2 · · · xn

x2
1 x2

2 · · · x2
n



















y1/σ
2
1

y2/σ
2
2

...

yn/σ2
n













= VA







∑

l y1/σ
2
l

∑

l xlyl/σ
2
l

∑

l x
2
l yl/σ

2
l







To get an idea what the covariance matrix looks like, let’s assume further that the

measurement errors are identical (σi = σ) and that the n points are evenly distributed on

the interval 0 ≤ x ≤ L. We will also assume that n is large so that the difference between

n, n + 1, n + 2, etc. can be ignored. In the approximation of large n, the sums in V−1

A can

be approximately evaluated as integrals to yield

VA =
σ2

n







1 1

2
L 1

3
L2

1

2
L 1

3
L2 1

4
L3

1

3
L2 1

4
L3 1

5
L4







−1

=
σ2

n







9 −36/L 30/L2

−36/L 192/L2 −180/L3

30/L2 −180/L3 180/L4






.

In this case the errors can be obtained from the diagonal portion of VA to yield:

σa =

√

9

n
σ

σb =

√

192

n

σ

L

σc =

√

180

n

σ

L2
.

18



These results were first obtained by Gluckstern in 1964 using a somewhat different approach.

9. Simple Application of Constrained Track Fitting

Let’s take the simple model from the last section and apply constraints to it. An inter-

esting set of constraints is to require that two tracks emerge back to back from a common

interaction point. The subscripts 1 and 2 will denote the track being considered. Then η,

the vector of unknowns, is 6 dimensional and has the form

η =























a1

b1

c1

a2

b2

c2























where we want to enforce the constraints a2 = a1, b2 = b1 and c2 = c1. We demand that n

equally spaced measurements be taken of track 1 in the interval 0 ≤ x ≤ L and the same

number for track 2 be taken for −L ≤ x ≤ 0 (that’s right, folks, we’re faking a back to back

2 track event in a solenoidal detector).

The covariance matrix for the two tracks is initially block diagonal because the tracks

were fit independently. We can write it as

Vη0
=

σ2

n























9 −36/L 30/L2 0 0 0

−36/L 192/L2 −180/L3 0 0 0

30/L2 −180/L3 180/L4 0 0 0

0 0 0 9 36/L 30/L2

0 0 0 36/L 192/L2 180/L3

0 0 0 30/L2 180/L3 180/L4























.

Some of the off-diagonal terms for the second track switch sign because the matrix value is

summed over odd powers of x for these values.
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The constraint equations are written Dη + d = 0. By inspection we see that d = 0 and

D =







1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1






.

We can compute VD as

Vλ = VD = (DVη0
Dt)−1

=
n

σ2







18 0 60/L2

0 384/L2 0

60/L2 0 360/L4







−1

=
n

σ2







1/8 0 −L2/48

0 L2/384 0

−L2/48 0 L4/160







The new track variables are computed, using the matrices we just determined, from

λ = VD(Dη0 + d) = VD







a10
− a20

b10
− b20

c10
− c20






=

n

σ2







(a10
− a20

)/8 − (c10
− c20

)L2/48

(b10
− b20

)L2/384

−(a10
− a20

)L2/48 + (c10
− c20

)L4/160







η = η0 − Vη0
Dtλ.

Finally, we can compute the full covariance matrix of the new variables as

Vη = Vη0
− Vη0

DtVλDVη0

=
σ2

n























9/8 0 −15/8L2 9/8 0 −15/8L2

0 3/2L2 0 0 3/2L2 0

−15/8L2 0 45/8L4 −15/8L2 0 45/8L4

9/8 0 −15/8L2 9/8 0 −15/8L2

0 3/2L2 0 0 3/2L2 0

−15/8L2 0 45/8L4 −15/8L2 0 45/8L4























This covariance matrix (which took me 2 hours to compute, so I hope someone is reading

this) exhibits all the properties we would expect from a constraint in which track parameters

are forced to be equal: (1) The correlation between any two parameters in the same track

is the same as that between the same two parameters in the other track or between both
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tracks; (2) The curvature variance (parameter 3) is 32 times smaller than it was for the

unconstrained fit. This makes sense because we can think of the 2 tracks forming a single

long track with twice as many measurements and twice the length of a single track. The

factor of 1/32 comes from the fact that the variance for the curvature scales like 1/nL4.

This same argument cannot be applied to the other 2 parameters because their accuracy

depends on where the measurements take place, i.e., in the unconstrained case they are

determined externally to the measurement region whereas when constraints are applied they

are determined within the measurement region of the “single” track.

Appendix: Tricks for Inverting Large Matrices

1. Factorization method

Many square matrices are “almost” invertible in the sense that they can be written as

the sum of a large invertible piece plus a piece that spoils the inversion. An example which

comes up frequently is the band matrix



















xxx 0 0 · · · yyy

0 xxx 0 · · · yyy

0 0 xxx · · · yyy
...

...
...

. . .
...

yyy yyy yyy · · · zzz



















where “xxx”, “yyy” and “zzz” are matrices (xxx and zzz are square). Although there are no

doubt published ways of inverting such matrices, I came up with an exact algorithm which

solves the problem neatly.

Let’s consider the general case first, i.e. not assume any symmetry. We write the matrix

we want to invert and its inverse as

V −1 =

(

V11 V12

V21 V22

)

−1

=

(

A C

B D

)

21



where V11 and V22 are square matrices and assume that V11 is invertible. Then the equation

(

A C

B D

)(

V11 V12

V21 V22

)

=

(

1 0

0 1

)

must be satisfied. Solving the implied four equations for A, B, C and D yields

V −1 =

(

V11 V12

V21 V22

)

−1

=

(

V −1
11

+ V −1
11

V12S
−1V21V

−1
11

−V −1
11

V12S
−1

−S−1V21V
−1
11

S−1

)

where S = V22−V21V
−1
11

V12. Since the only matrix that must be inverted is S (V −1
11

is already

known), the dimensions of V22, and hence S, should be chosen to be as small possible for

maximum effectiveness. If V is symmetric then V21 = V t
12.

If the matrix is such that only the element V22 can be inverted, the sequence of steps

that led top the previous solution can be modified to give

V −1 =

(

V11 V12

V21 V22

)

−1

=

(

S′−1 −S′−1V12V
−1
22

−V −1
22

V21S
′−1 V −1

22
+ V −1

22
V21S

′−1V12V
−1
22

)

where S′ = V11 − V12V
−1
22

V21. The same statements about maximum effectiveness apply

here: the dimensions of V11 should be chosen to be as small as possible.

2. Woodbury formula

Instead of factoring the matrix into 4 pieces, it is sometimes possible to write it as

A + UV t, where A is invertible. A is a n × n matrix and U , V are n × p matrices, where

p < n. Our strategy, as in the previous section, is to find a way to invert the total matrix

by inverting another smaller matrix of size p × p.

The general expansion of the inverse of a sum of matrices A + δA is

(A + δA)−1 = A−1 − A−1δAA−1 + A−1δAA−1δAA−1 + . . .

In our case δA = UV t so the expansion becomes

(A + UV t)−1 = A−1 − A−1UV tA−1 + A−1UV tA−1UV tA−1 − . . .

Looking at the expansion we can pick out a repeating unit X = V tA−1U which is of size
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p × p. The equation now becomes

(A + UV t)−1 = A−1 − A−1UV tA−1 + A−1UXV tA−1 − A−1UX2V tA−1 + . . .

= A−1 − A−1U(1 − X + X2 − X3 + . . .)V tA−1

= A−1 − A−1U(1 + X)−1V tA−1

= A−1 − A−1U(1 + V tA−1U)−1V tA−1

where (1 + V tA−1U) is a p × p matrix. This expression is called the Woodbury formula. It

is stated without proof in Numerical Recipes, p.68.

23


