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1. Introduction

This is the second paper in my thrilling series on �tting theory. In this note I will con-

centrate on determining systematic contributions to measurement error. These systematic

e�ects can degrade the resolution of the parameters beyond what is reported in the statis-

tical error. Examples of e�ects that are commonly found in track �tting are misalignment

of detector positions and orientations, nonuniformity of the magnetic �eld, noncircularity of

a drift chamber layer, unaccounted bowing in the endplates (which a�ects stereo angles),

extra wire sag, twisting of the endplates relative to each other, and so forth.

I present here a method which allows one to determine these systematic e�ects provided

that one can parametrize the e�ect of any given parameter on the measurement. The heart

of the technique lies in performing many thousands of �ts (constrained or unconstrained),

each of which depends on parameters local to that �t together with the unknown parameters

describing the systematic e�ect. One naively would expect this procedure to be hopeless be-

cause the �2 minimization would lead to thousands of equations to be solved simultaneously.

It turns out, however, that one can remove the parameters describing the many distinct �ts

and only determine the small number of remaining systematic unknowns. Better still, one

can accumulate statistics steadily, without any intermediate matrix inversion, in order to

reduce the errors in these parameters.

Note: I make no claim to be the only person ever to have invented this algorithm. My

treatment is very general, however, since it permits the calculation of the full covariance
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matrix of the systematic parameters. I also include the interesting case where the individual

�ts were performed with constraints.

2. Finding Systematic E�ects Using Unconstrained Fits

In the �rst paper in the series (CBX 91�72), I gave a general overview of �tting theory

using matrix notation. I showed that if the dependence of the measurements on the param-

eters can be linearized, then the solution which is best from the point of view of minimum

variance, can be obtained rather easily, even in the presence of constraints, by minimizing

the �2 function,

To recapitulate the argument, suppose we want to �t a set of n measurements y to a set

of m parameters � through the relation yl = fl(�) for 1 � l � n. If the fl(�) are nonlinear we

can expand them about an approximate solution � = �A: yl = fl(�A)+(@fl=@�i)(�i��A i).

This linearization permits us to de�ne the �2 statistic as

�2 = (y� f(�A)�A(� � �A))
tV�1

y (y� f(�A)�A(�A � �))

� (�y�A�)tV�1

y (�y�A�)

where�y = y�f(�A), Ali = @fl(�)=@�i�A is a constant matrix, � = ���A is the new vector

of unknowns, and V�1
y is the inverse of the covariance matrix of the measurements. Since

the �2 measures how much the measurements \miss" the function, the solution we want is

that which minimizes �2, i.e., @�2=@�i = 0. The solution was found to be � = VAA
tV�1

y �y

with covariance matrix V�, where V� = VA = (AtV�1
y A)�1.

Now suppose we have many hundreds, or even thousands, of such �ts and that each �t

l depends on parameters �l which are local to it as well as some unknown parameters v (s

of them) which a�ect all �ts (note: when I use the word \�t" I refer to any complete �t, for

example a single track or even a set of tracks within an event). Our goal is to �nd v. For

this case the �2 can be written as the sum

�2 =
X

l

(�yl �Al�l �Blv)
tV�1

y l
(�yl �Al�l �Blv);

where I have assumed that the parameters v are small enough that their e�ect on the

measurements yl can be expressed linearly as �yl = Blv, with Bl a n�s matrix. Minimizing
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this total �2 function with respect to the variables � and v we obtain the set of equations

�l : At
lVyl

�1(�yl �Al�l �Blv) = 0;

v :
X

l

Bt
lVyl

�1(�yl �Al�l �Blv) = 0:

Although the number of equations is huge, straightforward algebra gives a surprisingly

simple solution for v and its covariance matrix Vv in terms of two matrices, s and S:

v = S�1s

Vv = S�1

where s and S are de�ned as

s =
X

l

Bt
lV

�1

y l
(�yl �Al�l0) �

X

l

Bt
lV

�1

y l
rl

S =
X

l

(Bt
lV

�1

y l
Bl �U

t
lV

�1

y l
Ul)

�l0 = VA lA
t
lV

�1

y l
�yl

�l = �l0 �VA lUlv:

The auxiliary matricesVA l andUl are de�ned asVA l = (At
lV

�1

y l
Al)

�1 andUl = At
lV

�1

y l
Bl.

Note that the equation for s involves the term rl =�yl�Al�l0, which is the just the vector

of residuals for each individual �t l, ignoring v.

The end result is that the parameters v can be obtained by performing a large number

of individual �ts (ignoring the e�ect of v) and then accumulating the results of each �t in

two matrices, s and S. Recall that the word \accumulating" refers to a sum over complete

�ts. In high energy physics language this normally means a sum over individual tracks, but

it could even be a sum over events if all the tracks within an event were �t together. The

sequence of steps that should be followed is shown below.

1: For each �t in which the data values yl and coe�cients Al are given, compute �y =

y� f(�A), and VA l, solve for �0l as shown above and compute the residuals rl. This

step assumes nothing about the e�ect of the v parameters.
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2: Compute Bl and Ul and accumulate over some sample of �ts the matrices s =
P

lB
t
lV

�1

y l rl and S =
P

l(B
t
lV

�1

y lBl �Ut
lV

�1

y lUl).

3: After accumulating the above matrices for awhile, occasionally invert S to get Vv

(remember that Vv = S�1) to see if the errors on v are small enough.

4: If the errors on v are not small enough, go to step 1 and accumulate more data. If

enough data has been taken, solve for v = S�1s.

Notice that you will not be able to compute the corrected values of �l during the ac-

cumulation since they depend on the value of v. Usually this is not important since what

is most often desired is v and its covariance matrix Vv. Of course, if you want the best

parameters �l for each individual �t l, you can always go back and reanalyze the data using

the now known values of v via the correction �l = �l0 �VA lUlv.

3. Finding Systematic E�ects Using Constrained Fits

It is fairly easy to extend the results of the previous section to the case where the

parameters v describing the systematic e�ects must be determined using �ts which were

performed with constraints. This situation occasionally arises in high energy physics when

individual tracks carry insu�cient information to determine a systematic parameter but

a set of tracks satisfying a global constraint does. For example, if the lower and upper

hemispheres of a drift chamber were displaced relative to one another, the shift would be in

principle unobservable in individual tracks because each track would lie completely within a

single hemisphere. However, the shift would have an e�ect if one constrained the dimuons

in e+e� ! �+�� events to meet in the middle.

Let the r constraint equations for the lth �t be written Hl(�l) = 0. Expanding about

�A as before, we obtain the linearized equations Hl(�A l) + (�l � �A l)@Hl(�A l)=@�l �

Dl�l + dl = 0, using obvious notation, where Dl is a r � m matrix and dl is a vector of

length r. Note that the number of constraints r can vary from �t to �t. The full �2 equation

can now be written, using the method of Lagrange multipliers, as

�2 =
X

l

(�yl �Al�l �Blv)
tV�1

y l
(�yl �Al�l �Blv) +

X

l

2�tl (Dl�l + dl);
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which, when minimized with respect to the parameters �l, v and �l, yields the equations

�l : �At
lV

�1

y l
(�yl �Al�l �Blv) +Dt

l�l = 0

v :
X

l

Bt
lV

�1

y l
(�yl �Al�l �Blv) = 0

�l : Dl�l + dl = 0

Again, straightforward matrix algebra yields the solution for v and its covariance matrix

Vv in terms of the accumulating matrices s and S:

v = S�1s;

Vv = S�1;

where s and S are given by

s =
X

l

Bt
lV

�1

y l
(�yl �Al�

0

l0) �
X

l

Bt
lV

�1

y l
rl

S =
X

l

(Bt
lV

�1

y l
Bl �Ut

lVA lUl +Wt
lVD lWl)

�0l0 = �l0 �VA lD
t
l�l0

�l0 = VA lA
t
lV

�1

y l
�yl

�l0 = VD l(Dl�l0 + dl)

�l = �l0 �VD lWlv

�l = �l0 �VA lD
t
l�l �VA lUlv:

The auxiliary matrices are given by VA l = (At
lV

�1

y lAl)
�1, Ul = At

lV
�1

y lBl, VD l =

(DlVA lD
t
l)
�1 and Wl = DlVA lUl. Note that �l0 and �0l0 are, respectively, the uncon-

strained and constrained solutions for the individual �ts obtained without knowledge of the

systematic parameters v.

The solution should be obtained using the following sequence of steps.

1: For each �t in which the data values yl and coe�cients Al are given, compute �y =

y � f(�A) and VA l and solve for the unconstrained parameters �0l as shown above.

The e�ects of v are ignored here.
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2: Determine VD l, solve for �l0 and the constrained parameters �0l0 and compute the

residuals rl. The e�ects of v still play no role here.

3: Compute Bl, Ul, Wl and accumulate over some sample of �ts the two matrices s =
P

lB
t
lV

�1

y l rl and S =
P

l(B
t
lV

�1

y lBl �Ut
lV

�1

y lUl +Wt
lVD lWl).

4: After accumulating the above matrices for awhile, occasionally invert S to get Vv

(remember that Vv = S�1) to see if the errors on v are small enough.

5: If the errors on v are not small enough, go to step 1 and accumulate more data. If

enough data has been taken, solve for v = S�1s.

As mentioned in the last section, you will not be able to compute the corrected values of

�l during the accumulation since they depend on the value of v. However, after determining

v you can go back and reanalyze the data.

4. Tracking example

This example is derived from a real application in the CLEO central tracking detector.

The central detector consisted at one time of three separate pieces: (1) a 3 layer microvertex

chamber consisting of straws; (2) a 10 layer gaseous vertex detector; and (3) a 51 layer drift

chamber. The large drift chamber de�ned the coordinate system and the other two chambers

had no z information available on the anode wires. Since the accuracy of chamber placement

was far inferior to the internal machining of each chamber, 10 positioning parameters, 5 for

each chamber, had to be determined:

1: O�set in x

2: O�set in y

3: Rotation in the x� z plane

4: Rotation in the y � z plane

5: Rotation in the x� y plane

The z o�set could not be determined because there was no z information on the anode wires

of the inner chambers.
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The quantity that is measured by all the drift chambers is the drift distance, which is

the distance of closest approach of the track to the wire. Let �k be the azimuthal position

at which the track crosses the radial position of the wire and �k be the crossing angle in

the r � � plane (a perfectly radial track would have �k = 0). Let v1�5 be the positioning

parameters for the �rst chamber and v6�10 be the parameters for the second chamber. If

we call �dk the change in the drift distance for layer k due to vi, then we can write the

contribution to the drift distance as

�dk =
X

i

Bkivi:

For 1 � k � 3 (the �rst chamber), we can determine Bki to be

Bk1 = sin�k cos�k

Bk2 = � cos �k cos�k

Bk3 = zk sin �k cos�k

Bk4 = �zk cos �k cos�k

Bk5 = �rk cos�k

Bki = 0 i � 6;

where rk and zk are, respectively, the radius of the layer and z position of the hit (as

determined by an initial, approximate �t). For 4 � k � 13 (the second chamber), Bki is

Bk6 = sin�k cos�k

Bk7 = � cos�k cos�k

Bk8 = zk sin�k cos�k

Bk9 = �zk cos�k cos�k

Bk10 = �rk cos�k

Bki = 0 i � 5;

For 14 � k � 64 (the third chamber), Bki = 0.

The procedure for �nding these 10 constants is straightforward. For each track in the

data sample, we perform a �t using all three chambers to determine the track parameters �0
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and their covariance matrix VA. Each track is then traced through the detector to compute

the values of rk (the residual), zk, rk, �k and �k for each layer. Finally, we calculate the

matrix Bki and accumulate the two matrices s and S over the data sample. After su�cient

data has been gathered, we compute the 10 constants v = S�1s and their covariance matrix

Vv = S�1. Note that this approach requires only a single pass over the data. By comparison,

the conventional approach in which highly selected data (i.e., tracks lying close to the x or

y axes) are used to isolate each individual parameter requires several iterations to converge

properly.

5. Limitations of This Algorithm

I should comment before closing this paper that determining drift chamber positioning

constants with this �2 technique can lead to problems if you try to push it too far in terms

of accuracy, especially if the constants are highly correlated. The reason is that once you

get to the few micron level, many new e�ects arise that can partially mimic the ones you are

trying to determine. These e�ects can systematically skew the �t depending on the precise

set of tracks you pick. In CLEO, for example, there is a correction to the drift measurement

due to pulse height saturation that is a function of �, the dip angle. Unfortunately, � is

highly correlated with the z value of the track at any layer, causing problems in determining

the tilts of chambers since the e�ect of tilt on drift distance is linear in z.

Another example from CLEO is illustrative. Layer by layer measurements of drift dis-

tance have an E �B correction that has the net e�ect of making the time{distance (t� d)

relation asymmetric, i.e., left is di�erent from right. This e�ect interferes with the ability to

precisely determine the x � y rotation angle of one chamber relative to another. If it were

symmetric, then the fact that there would be roughly an equal number of tracks on the left or

right of any cell would cause any uncertainty in the t�d relation to cancel when determining

the rotation angle. A possible solution is to avoid using the innermost or outermost layers

(since these have the largest asymmetry) and only use drift distances well within the cell, so

that E �B e�ects are minimized.

Avoidance of systematic bias can be tricky. For example, if you plan to use Bhabha events

(e+e� ! e+e�) to measure chamber positions and orientations, be aware of the fact that
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Bhabha events are primarily forward scattered, meaning that positive charged tracks tend

to have a particular sign of pz and negative tracks another. This can cause great problems

in determing chamber positions and orientations if there are systematic e�ects which are

charge dependent. Suppose, for example, that the drift chamber endplates are slightly

rotated with respect to one another. This causes the curvature of tracks to be slightly shifted

systematically, resulting in a change of momentum. If positive tracks along the +z direction

get an increase in momentum, then they are reduced in momentum along the �z direction.

The opposite behavior holds for negative tracks. Now, if an equal number of positive and

negative tracks are used in each direction (for instance by using e+e� ! �+�� events)

then the e�ect cancels. It does not cancel for Bhabha events because of the aforementioned

asymmetry.
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