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1. The Problem

In the �rst paper in this series, I gave a general overview of least squares �tting theory

and showed that if the dependence of the measurements on the parameters can be linearized,

the parameters which minimize the �2 function can be obtained rather easily, even in the

presence of constraints.

To recapitulate the argument, suppose we want to �t a set of n measurements y to a set

of m parameters � through the relation yl = fl(�) for 1 � l � n. If the fl(�) are nonlinear we

can expand them about an approximate solution � = �A: yl = fl(�A)+(@fl=@�i)(�i��A i).

This linearization permits us to de�ne the �2 statistic as

�2 = (y � fA(�A)�A(� � �A))
tV�1

y (y� fA(�A)�A(�A � �))

� (�y�A�)tV�1

y (�y�A�)

where �y = y � fA(�A), Ali = @fl(�)=@�i�A is a constant matrix, � = � � �A is the new

vector of unknowns, and V�1

y is the inverse of the covariance matrix of the measurements.

Since the �2 measures how much the measurements \miss" the function, the solution we

want is that which minimizes �2, i.e., @�2=@�i = 0. The solution was found to be � =

VAA
tV�1

y �y with covariance matrix V�, where V� = VA = (AtV�1

y A)�1. The Gauss-

Markov theorem states that the parameters obtained by this procedure are both unbiased

and have minimum uncertainties, i.e., they are the best parameters that can be determined

by any method. So far, so good.
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Under normal circumstances the measurment errors �l are independent of each other,

i.e., the weight matrix V�1

y can be written in diagonal form:

V�1

y =

0
BBBB@

1=�2
1

0 � � � 0

0 1=�2
2

� � � 0
...

...
. . .

...

0 0 � � � 1=�2n

1
CCCCA ;

which is obtained by inversion of the diagonal covariance matrix Vy ij = h�yi�yji = �2i �ij.

Thus it is a trivial matter to �t an arbitrary number of measurements.

There are situations, however, where the data measurements yl are not independent

of each other, so that movement of a particular measurement will cause the simultaneous

adjustment of other measurements. An example of this is multiple scattering, in which a

single scattering event at a particular point a�ects the drift distance measurements at all

subsequent points. In this case the deviation of the measurements from the original track

will have an independent component due to random measurement errors and a correlated

component due to the presence of the multiple scattering event. The correlations among

the data points can be computed and put into the measurement covariance matrix Vy. The

problem now is obtaining V�1

y : the inversion of the covariance matrix can be prohibitively

time consuming when the number of measurements n is large. In the CLEO central detector,

for instance, a track can have as many as 71 measurements. Inverting a 71 � 71 matrix at

least once per track to account for multiple scattering is just not very practical, unless one

has a lot of CPU time to waste.

2. Non-Optimal Least Squares Fitting

Several attempts have been made in the literature to account for multiple scattering

e�ects in track �tting. The methods employed range from the mundane to the elegant, but

a common goal links all of them: �nding a set of track parameters whose errors are as close

as possible to the optimal values calculated in Section 1, but without the high cost in CPU

time which that technique entails. I call this the \optimal" approach.
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For most tracks inclusion of multiple scattering e�ects in the �tting algorithm does not

improve the parameters of the �t signi�cantly, except for very slow tracks. A large amount

of programming and CPU time is invested in making marginal improvements in the track

parameters. In fact, what is many times desired is not the best possible parameters, but

parameters whose errors are well understood. Knowledge of these errors is important when

they are used as input to kinematic �tting or when a sensitive lifetime measurement depends

critically on uncertainties in the vertex resolution. In both cases, lack of understanding of the

parameter errors and their correlations can give erroneous physics results, especially when

those results are based on a quoted number of standard deviations.

I start by noting that the procedure whereby one looks for parameters which minimize

the �2 function is merely one possible estimation scheme | although it is the optimal one

| and that others are possible. Assume, for instance, that an approximation for V�1

y

exists which we call ~V�1

y . ~V�1

y will almost certainly be diagonal, but this assumption is not

necessary in what is to follow. We de�ne a modi�ed form of the �2 function

~�2 = (y � fA �A�)t ~V�1

y (y� fA �A�)

� (�y�A�)t ~V�1

y (�y �A�)

The parameters obtained by minimizing ~�2 are given by � = ~VAA
t ~V�1

y �y, where ~VA =

(At ~V�1

y A)�1. The covariance matrix must be calculated from the de�nition

V� � h����ti = ~VAA
t ~V�1

y h�y�yti ~V�1

y A ~VA = ~VAA
t ~V�1

y Vy
~V�1

y A ~VA:

This equation collapses to V� = VA when ~V�1

y = V�1

y .

Notice what has been accomplished here: I have produced an estimate of the �tting

parameters and their associated covariance matrix without inverting the measurement co-

variance matrix Vy. Furthermore, the estimate is unbiased (the parameters converge to

the true values if the experiment is repeated inde�nitely) and the covariance matrix | and

hence the errors | are known exactly. The price paid for this estimation scheme is that

the parameter errors are no longer the best possible; that would require the minimization

of the original �2 function. However, if ~V�1

y is a reasonable representation of V�1

y then the

\non-optimal" estimate may in fact be close to optimal.
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3. Non-Optimal Fitting with Constraints

The e�ect of constraints can easily be taken into account by the standard Lagrange

Multiplier method where the \initial" unconstrained values and their covariance matrix are

obtained by the non-optimal �tting procedure. This procedure works exactly the same as if

the parameters were obtained by the normal optimal least squares technique. The reason is

because constraints act only to move the �tted parameters away from their unconstrained

values and the relative motion of each of the parameters is governed by the covariance matrix

of the �t, which has absorbed all the information regarding details of the measurement errors

and correlations. This point was discussed in Section 5 of the �rst paper in this series, CBX

91{72.

4. Simple Application to Multiple Scattering

Particles moving through a detector su�er innumerable collisions which alter the tra-

jectory of the particle by a stochastic process. In general, a particle traversing material of

length �x and a radiation length LR will be de
ected in any particular plane by an random

angle � whose r.m.s. value can be calculated from

h�2i =

�
0:0141

p�

�
2

�x

LR
= H�x;

where p is the momentum in GeV/c and � is the velocity in units of c. Note that this is the

width in each of two planes perpendicular to each other and lying along the 
ight path. I am

only accounting for standard multiple scattering e�ects that can be described by Gaussian

statistics; single scattering theory is too complicated to incorporate in least squares �tting,

at least by me.

Now consider a particle moving in a solenoidal detector (having a magnetic �eld in

the z direction) from a point near the center and assume that the drift distance to a wire

is measured in every layer. If the particle has su�cient momentum so that there is not

much bending, we can equate this situation to a simple geometry in which n planar drift

chamber are arrayed along the x axis which is de�ned to be the direction of the particle

in the r � � plane (i.e., x is really a measurement of the radius r and y measures the
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drift distance). The covariance matrix of the measurements can be represented by the sum

Vy = Vy0 + VyD + VyC , where Vy0 = diag(�2i ) is the component due to independent

measurement errors, VyD is due to multiple scattering at discrete surfaces and VyC is a

result of continuous multiple scattering in gas.

Let's consider discrete scatterers �rst. If material of thickness t is present at x = xS, the

track will be de
ected stochastically from its nominal 
ight path by an angle �s, causing the

drift distance measurements at plane i to be changed by an amount �yi = �s(xi � xS). The

covariance matrix element (VyD)ij can then be calculated from its de�nition, viz.

(VyD)ij = h�yi�yji = h�2si(xi � xS)(xj � xS) � Ht(xi � xS)(xj � xS);

and is 0 if xi � xS or xj � xS. Note that t should re
ect the total path length of the track

through the scatterer; this is expecially important for tracks having signi�cant components

in the z direction.

Continuous scattering is slightly more complicated. Assume the presence of gas in the

region xG1 � x � xG2, where L = xG2 � xG1. If we divide up the path into small regions

�x the total scattering angle and deviation up to a point x in the gas volume is

� =

NX
l=1

��l

�y =

NX
l=1

�l�x =

NX
l=1

(N � l)��l�x;

where �x = (x� xG1)=N . Thus the covariance matrix element for points xi and xj (where

xj � xi) in the gas volume is

(VyG)ij =

NiX
l=1

NjX
l0=1

(Ni � l)(Nj � l0)h��l��l0i�x2 =

xiZ
xG1

H(xi � x)(xj � x)dx

= H
1

2
(xi � xG1)

2(xj � xG1 �
1

3
(xi � xG1));

where I have used h��l��l0i = H�x�ll0.
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If xi and xj both are beyond the gas region the above equations have to be modi�ed to

� =

NGX
l=1

��l

�y =

NGX
l=1

�l�x+ �(x� xG2) =

NGX
l=1

(NG � l)��l�x+ �(x� xG2);

where NG = L=�x. In this case the covariance matrix is

(VyD)ij = HL

�
1

3
L2 +

1

2
L[(xi � xG2) + (xj � xG2)] + (xj � xG2)(xi � xG2)

�
:

If xj is beyond the gas region and xi is inside it the covariance matrix becomes

(VyD)ij = H
1

2
(xi � xG1)

2(L�
1

3
(xi � xG1) + (xj � xG2)):

xi and xj are interchanged in the above equation if xi is beyond the gas region and xj is

inside of it.

5. Summary of Multiple Scattering Formulas

A summary of the contributions to the multiple scattering matrixVy = Vy0+VyD+VyC

is shown below (remember that xj and xi are de�ned such that xj � xi).

1. Measurement error:

(Vy0)ij = �2i �ij

where �i is the measurement error of layer i.

2. Scattering from discrete material (thin) at x = xS and thickness t (remember that

H = (0:0141=p�)2=LR is the square of the r.m.s. scattering angle per unit length in a plane
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and LR is the radiation length):

(VyD)ij = Ht(xi � xS)(xj � xS) for xi; xj � xS

= 0 otherwise

3. Scattering in a gas region xG1 � x � xG2; L = xG1 � xG2:

(VyG)ij = H
1

2
(xi � xG1)

2(xj � xG1 �
1

3
(xi � xG1))

for xG1 � xi; xj � xG2

(VyD)ij = H
1

2
(xi � xG1)

2(L�
1

3
(xi � xG1) + (xj � xG2))

for xG1 � xi � xG2; xj � xG2

(VyD)ij = H
1

2
(xj � xG1)

2(L �
1

3
(xj � xG1) + (xi � xG2))

for xG1 � xj � xG2; xi � xG2

(VyD)ij = HL

�
1

3
L2 +

1

2
L[(xi � xG2) + (xj � xG2)] + (xj � xG2)(xi � xG2)

�

for xi; xj � xG2

= 0 otherwise
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