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This note introduces some mathematical algorithms that I have developed over the

years for �tting and projecting tracks in solenoidal magnetic �elds. I have spent several

years developing these formulas but so far the documentation has existed only in hand-

written notes and Fortran programs. Hopefully, this note will provide a useful reference

for anyone interested in these details. Many of the equations have been implemented in

the FTMONTE package, and I have made every e�ort to make sure that the formulas

are correct, although there might be an error or two lurking somewhere. I have built in

various cross checks in my programs to verify that the Fortran code is correct, especially

the derivatives.

1. Helix equations of motion

1.1. Track representations

I use two track representations:

1: The C or canonical representation is used in track �tting; the 5 parameters describe

the entire shape of the helix. �C = (c; �0; D; �; z0), where c = 1=2R, R being the

radius of curvature, �0 is the � of the track momentum at the distance of closest

approach to the origin, D is the signed impact parameter in the x�y plane, � = cot �,

where � is the polar angle measured from the +z axis and z0 is the z of the track at

the point of closest approach to the origin in the x� y plane.
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2: The W representation is used in kinematic �tting and for �nding the 4{momentum

at a particular point on the helix. �W = (px; py; pz; E; x; y; z), i.e., a 4{momentum

plus a point at which the 4{momentum is evaluated.

1.2. Equations of motion

I begin by de�ning the following useful symbols:

a = �0:2998BQ (B = mag: �eld; Q = charge)

p? =
q
p2
x
+ p2

y

u = px=p?

v = py=p?

u0 = p0x=p? = cos�0

v0 = p0y=p? = sin�0

� =
1

R
R = radius of curvature

Assume that the particle has charge Q and is moving in a magnetic �eld of strength

B. The particle moves along a helix with a signed radius of curvature R. R (and �) is

positive for counterclockwise motion. The trajectory of a helix is governed by the following

equations, valid when B is along ~z.

px = p0x cos �s? � p0y sin �s?

py = p0y cos �s? + p0x sin �s?

pz = p0z

E = E0

x = x0 +
p0x

a
sin(�s?)�

p0y

a
(1� cos(�s?))

y = y0 +
p0y

a
sin(�s?) +

p0x

a
(1� cos(�s?))

z = z0 + �s?

where (x0; y0; z0) is a known point on the helix, (p0x; p0y; p0z; E0) is its 4{momentum vector

there and � = 2c = �0:2998BQ=p? � a=p?, They are functions of s?, the arc length in
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the x � y plane from (x0; y0; z0) to the point x; y; z we are trying to �nd. If (x0; y0; z0)

is the point of closest approach to the origin, then p0x, p0y, p0z, E0, x0, y0 and z0 can be

written in terms of the 5 canonical parameters:

p0x = p?u0 =
a

2c
cos�0

p0y = p?v0 =
a

2c
sin�0

p0z = p?� =
a

2c
�

E0 =

q
p2?(1 + �2) +m2

x0 = �Dv0 = �D sin�0

y0 = +Du0 = +D cos�0

z0 = z0

It is easy to see that D is positive when the � of the position is greater than that of the

direction of motion at the point of closest approach. Note that rmin = jDj and that the

point of closest approach, reached when s? = 0 is just (x0; y0). The track reaches its

maximum radius rmax = jD + 1=cj when �s? = �. This occurs at the point (xmax; ymax),

where

xmax = �
�
D +

1

c

�
v0;

ymax = +

�
D +

1

c

�
u0:

The center of the circle is found to be at

xc = �
�
1

2c
+D

�
v0;

yc = +

�
1

2c
+D

�
u0:

The quantity 1 + �D = 1 + 2cD is always positive; this fact turns out to be very useful

when using the track parameters as we will see later.

A pair of conserved quantities can be derived from the (x; y; z) equations by substitut-
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ing the equations for px and py:

px + ay = p0x + ay0 = const

py � ax = p0y � ax0 = const

1.3. Track coordinates as a function of radius

Sometimes it is useful to express �, z and s? as a function of r =
p
x2 + y2:

sin(�� �0) =
rc+ (D=r)(1 + cD)

1 + 2cD
=
D

r
+

(c=r)(r2 �D2)

1 + 2cD
;

cos(�� �0) = �
p
(1�D2=r2)[(1 + cD)2 � r2c2]

1 + 2cD
;

z � z0 = �s?;

sin cs? = c

r
r2 �D2

1 + 2cD
;

where the sign of cos(���)) is chosen depending on whether the particle is on the outgoing

(+1) or incoming (�1) branch of the circle. This ambiguity is fundamental; the particle

always passes through the same radius going out and coming in.

The momentum and position coordinates at the radius r are given by

px = p0x(1� 2B2)� p0y2�B
p
1�B2

py = p0y(1� 2B2) + p0x2�B
p
1�B2

pz = p0z

x = x0 +
u0

�
2�B

p
1� B2 � v0

�
2B2

y = x0 +
v0

�
2�B

p
1�B2 +

u0

�
2B2

z = z0 + �s?

s? =

(
(1=c) sin�1B for � = +1

(1=c)(� � sin�1B) for � = �1

where B = c
p
(r2 �D2)=(1 + 2cD) = sin 1

2
�s? = sin cs? and � = +1(�1) corresponds to

the outgoing (incoming) branch.
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Similarly, we can calculate the angle � between the track direction and the radius

vector

sin� =
xpy � ypx

rp?
= rc� D

r
(1 + cD);

cos� =
xpx + ypy

rp?
= (1 + 2cD) cos(�� �0) = �

p
(1�D2=r2)[(1 + cD)2 � r2c2]:

Note that sin� ' rc and s? ' (1=c) sin�1 rc for D � r and cD � 1. Also, the sign of

� can be determined if one knows the position and momentum components at any given

point on the helix from the formula for cos�.

1.4. Computing track parameters from instantaneous position and momentum

This is similar to the classic problem of �nding planetary orbital elements given the in-

stantaneous position and velocity vectors. Assume we are given �W = (px; py; pz; E; x; y; z).

First we �nd � and c:

� = cot � = pz=
q
p2
x
+ p2

y
� pz=p?

c = �=2 = �0:1499BQ=p? � a=2p?:

Take the equations of motion above and solve for sin �s?, cos �s?:

(p? + aD) sin �s? = �(xpx + ypy);

(p? + aD) cos �s? = p? � �(xpy � ypx);

which yields s? and

cos�0 =
px + ay

T
;

sin�0 =
py � ax

T
;

D =
1

a
[T � p?] =

�2(xpy � ypx) + a(x2 + y2)

T + p?
;

z0 = z � �s?;

where T =
p
p2? � 2a(xpy � ypx) + a2(x2 + y2). The second form for D is useful for parti-

cles with small curvature. For the case when a = 0 (zero curvature), the equations simplify
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to

c = � = 0

cos�0 = px=p?

sin�0 = py=p?

D = (ypx � xpy)=p?

� = pz=p?

z0 = z � �s? (s? =
xpx + ypy

p?
)

2. Useful formulas for track �tting in a Solenoidal Field

I present here some useful formulas for calculating the quantities directly measured

in the most common tracking devices and their partial derivatives with respect to the 5

helix parameters. These values are needed by the track �tting routines described in this

document. I assume that the magnetic �eld is along the z axis. See the �rst section for

the de�nition of some of the symbols used here.

The measurments needed are (1-2) the distance of closest approach to axial and stereo

drift chamber wires, (3) z as measured by cathode strips in drift chambers, (4-5) the

distance along r�� and r� z silicon planes and (6-7) the distance along x and y in silicon

disks located at �xed z positions. The Fortran code for these cases is stored in libFTLIB.

The above quantities are computed in FTDRF1-7 and FTDF1-7, the analytic derivatives are

calculated in FTDRV1-7 and the numerical derivatives (absolutely essential for checking the

analytic expressions) are computed in FTDRN1-7.

2.1. Axial drift chamber wires

Consider an axial wire at position (xw; yw) and de�ne (x; y; z) as the point on the helix

which is closest to (xw; yw) (we need only consider the x�y motion) and call dw the signed

distance of closest approach of the track to the wire. Now use the fact that the normal

to the circle at (x; y) lies along the radius vector and passes through (xw; yw). The x� y

direction cosines of the track at that point are (u; v) = (px=p?; py=p?) so the normal to
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the circle has direction cosines (�v; u). Writing the equation of the normal as

x+ dwv = xw;

y � dwu = yw;

we get, after a little manipulation,

(1 + �dw) cos �s? = 1� �v0�x + �u0�y;

(1 + �dw) sin �s? = ��u0�x � �v0�y;

where �x = x0 � xw and �y = y0 � yw. This allows us to solve for s? and

dw =
1

�

hp
1 + 2��w � 1

i
=

2�w

1 +
p
1 + 2��w

' �w(1�
1

2
��w)

where �w = u0�y � v0�x+
1

2
�(�2

x
+�2

y
) is a very good approximation to dw. The sign of

dw is positive when the track has a larger � than that of the wire.

The derivatives of dw with respect to the 5 helix parameters are

@dw

@c
= (�2

x
+�2

y
)(1� ��w)��2

w
;

@dw

@�0
= �(�xu0 +�yv0)(1 + �D)(1� ��w);

@dw

@D
= (1� ��xv0 + ��yu0)(1� ��w);

@dw

@�
= 0;

@dw

@z0
= 0:

These reduce, when � = 0, to

@dw

@c
= (�xu0 +�yv0)

2;

@dw

@�0
= �(�xu0 +�yv0);

@dw

@D
= 1;

@dw

@�
= 0;

@dw

@z0
= 0:
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2.2. Stereo drift chamber wires

Stereo wires couple three equations containing terms cos �s?, sin �s? and s?, which

makes them impossible to solve analytically. Let zp be the z coordinate of a point on the

wire, tan � be the tangent of the stereo angle � and (xw; yw) be the coordinates of the wire

at zp = 0 ((rw; �w) in polar coordinates). The coordinates of any point (xp; yp) on the wire

are

xp = xw + zp tan � sin�s;

yp = yw � zp tan � cos�s;

where the CLEO drift chamber is wire in such a way that �s = �w. The (unnormalized)

direction cosines of the wire and of the track at the point of closest approach to the wire

are

~�w = (tan � sin�s;� tan � cos�s; 1);

~�t = (u; v; �) = (u0 cos �s? � v0 sin �s?; v0 cos �s? � u0 sin �s?; �):

The line which is normal to both the wire and the helix at its point of closest approach

has direction cosines

~ud =
~�w � ~�t

j~�w � ~�tj
= (v + �0 cos�s;�u+ �0 sin�s; G1 tan �)=ud

ud =

q
1 + 2�0H1 + �02 +G2

1 tan
2 �

where ud is a normalization factor and

�0 = � tan �;

C1 = u0 cos�s + v0 sin�s = cos(�0 � �s);

S1 = v0 cos�s � u0 sin�s = sin(�0 � �s);

G1 = C1 cos �s? � S1 sin �s? = cos(�0 � �s + �s?);

H1 = C1 sin �s? + S1 cos �s? = sin(�0 � �s + �s?):

Just as in the axial wire case we write the equation of the normal:

x+ dw(v + �0 cos�s)=ud = xp;

y � dw(u� �0 sin�s)=ud = yp;

z + dwG1 tan �=ud = zp;

which can be seen to reduce to the axial case by setting the stereo angle � to zero. Note
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that the line normal to the track and the wire lies outside the x� y plane. Inserting the

equations of motion for x, y and z we get, after some manipulation, the equations we want

to solve

(1 + �dw=ud) cos �s? = +A1 �
�dw

ud
�0S1

(1 + �dw=ud) sin �s? = �A2 �
�dw

ud
�0C1

zp = z0 + �s? �
dw

ud
G1 tan �

where A1 = 1� ��xv0 + ��yu0, A2 = ��xu0 + ��yv0, �x = x0 � xw � zp tan � sin�s and

�y = y0 � yw + zp tan � cos�s.

Squaring, adding and collecting terms leads to the quadratic equation

d2
w

u2
d

(1� �02) +
dw

ud

J

�
� 2�w

�
;

where as before �w = u0�y�v0�x+
1

2
�(�2

x
+�2

y
) and J = 1+�0(A1S1�A2C1). Note that

the de�nition of �w here di�ers slightly from the axial case because it has z dependent

terms in �x and �y. The solution is

dw =
ud=�

1� �02
J
�
�1 +

p
1 + 2(1� �02)��w=J2

�
;

=
ud

J

2�w

1 +
p
1 + 2(1� �02)��w=J2

;

' ud

J
�w(1�

1

2
(1� �02)��w=J

2):

The �rst two expressions for dw are exact but still depend on cos �s?, sin �s? and

zp ' z0 + �s?. However, the latter expressions are all multiplied by terms proportional

to tan � so they only modify the �nal result slightly. For highest precision, I recommend

determining s? using the following procedure. First, treat the wire as axial and solve

sin cs? = c
p
(r2

w
�D2)=(1 + 2cD) for s?. This yields z ' z0 + �s? which can be used to

get more precise values for �x and �y. These can in turn be used to obtain better values for

cos �s? and sin �s? (and hence s?) using the (1+ �dw=ud) cos �s? and (1+ �dw=ud) sin �s?

equations above with �w substituting for dw in this �rst iteration. The values obtained for
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cos �s?, sin �s? and s? are accurate enough to be plugged into the above equation for dw.

One can iterate this procedure once more if necessary (using the value of dw just obtained

to get precise values of cos �s?, sin �s? and zp) but this is probably not necessary.

An alternative approach is to take the three coupled equations for cos �s?, sin �s? and

zp and expand the three unknowns s?, zp and dw to �rst order. For this work it is useful

to multiply the �rst two equations by cos �s? and sin �s? and add and subtract:

dw =
ud

�
(Ac � 1)� dw�

0H1;

0 = �ud
�
As � dw�

0G1;

zp = z0 + �s? �
dw

ud
G1 tan �;

where the terms Ac and As are de�ned by Ac = A1 cos �s? � A2 sin �s? and As =

A1 sin �s? + A2 cos �s?. The solution is started by assuming axial wires, i.e., tan � = 0.

Collecting dw terms and expanding to �rst order we get

�dw =
(XuAc �Xu + udG1�

0)�s?

1 + �0H1

;

�s? =
�s �G1�

0�dw

ud + �dw +XuAs + udH1�0
;

�zs ' ��s?;

where Xu = (G1=ud) [�
0 �H1 tan

2 � ], �c = (ud=�)(Ac � 1) � dw(1 + H1�
0) and �s =

�(ud=�)As � dwG1�
0.

To calculate the derivatives of dw with respect to the �ve track parameters we use the

approximate form of the dw solution:

dw '
ud

J
�w(1�

1

2
(1� �02)��w=J

2);

and ignore derivatives of ud and J because they are multiplied by terms of order �w tan �

which are very small for typical drift chambers. The derivatives with respect to c, �0 and

D are similar to the axial case except that for highest accuracy one must include the zp
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term in the de�nitions of �x and �y. The derivatives of dw can all be expressed in terms

of those of �w:

@dw

@�i
=
ud

J

�
@�w

@�i
(1� ��w=J

2)� �i1�
2
w
=J2

�
:

The values of @�w=@�i are calculated below, ignoring terms of order tan2 � and �dw tan � .

@�w

@c
= �2

x
+�2

y
+ �0

@s?

@c
(C1 + ��n)

@�w

@�0
= �u0�x � v0�y + �0

@s?

@�0
(C1 + ��n)

@�w

@D
= 1 + �0

@s?

@D
(C1 + ��n)

@�w

@�
= tan �

�
s? + �

@s?

@�

�
(C1 + ��n)

@�w

@z0
= tan �

�
1 + �

@s?

@z0

�
(C1 + ��n)

where �n = ��x sin�s +�y cos�s and the derivatives with respect to s? are given by

@s?

@c
= �2

�
(D sin �s? � (xwu+ ywv) + s?);

@s?

@�0
= �(xwv � ywu);

@s?

@D
= � sin �s?;

@s?

@�
= �s?H1 tan �;

@s?

@z0
= �H1 tan �;

where u = u0 cos �s?� v0 sin �s? and v = v0 cos �s?+u0 sin �s?. @s?=@c = 0 at � = c = 0.

2.3. Cathode strips

Cathodes actually measure the z position of a hit on the nearest anode wire layer.

Recall from the previous discussion of axial drift chamber layers

(1 + �dw) cos �s? = 1� �v0�x + �u0�y;

(1 + �dw) sin �s? = ��u0�x � �v0�y;

where �x = x0� xw and �y = y0� yw and (xw; yw) is the coordinate of the corresponding

anode wire. These equations can be solved trivially for s? and z = z0 + �s? (recall that
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1 + �dw is always positive). For highest accuracy in calculating derivatives, it is necessary

to solve for dw using the results in the section on axial wires:

dw =
1

�

hp
1 + 2��w � 1

i
=

2�w

1 +
p
1 + 2��w

' �w(1�
1

2
��w)

where �w = u0�y�v0�x+
1

2
�(�2

x
+�2

y
) To �nd derivatives, we eliminate dw by multiplying

the �rst two equations by sin �s? and cos �s? and subtract to get

sin �s?(1� �v0�x + �u0�y) + cos �s?(�u0�x + �v0�y) = 0

Setting as before A1 = 1� ��xv0 + ��yu0 and A2 = ��xu0 + ��yv0 we get

@z

@c
= �2 �

�2
�s?(1 + �dw)� sin �s?

1 + �dw
@z

@�0
= ��

�

1 + �dw � (1 + �D) cos �s?)

1 + �dw
@z

@D
= �� sin �s?

1 + �dw
@z

@�
= s?

@z

@z0
= 1

For the special case � = 0, s? = �(u0�x + v0�y) and the derivatives reduce to

@z

@c
= 0

@z

@�0
= �(D � dw)

@z

@D
= 0

@z

@�
= s?

@z

@z0
= 1
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2.4. Silicon barrel (r � �)

The silicon barrel detector is composed of silicon planes arranged in a polygonal fashion

in � around the origin. The planes are assumed to be parallel to z and have small overlaps

at the edges where they meet. Assume that each plane is de�ned by its outward normal

~� = (cos�; sin �; 0) and any point on the plane ~xc. For this discussion it is convenient to

take ~xc as the point at which the normal, proceeding from the origin, strikes the plane.

The quantity measured by the electronics (up to a constant o�set) is the distance along

the plane in the r � � direction from the point ~x where the track hits the plane and ~xc.

The equation of the plane is ~� �(~x�~xc) = 0 or x cos �+y sin ��� = 0, where � = ~� �~xc
is the perpendicular distance from the plane to the origin. It is easier to solve the equation

in terms of \local" coordinates (x�; y�; z�) where the equation of the plane is x� = 0. The

transformation equations are

x� = x cos � + y sin � ��;

y� = y cos � � x sin �;

z� = z;

The equations of the helix can then be written �x0� + u0� sin �s? � v0�(1 � cos �s?) = 0,

where the rotated quantities are

u0� = u0 cos � + v0 sin � = cos(�0 � �);

v0� = v0 cos � � u0 sin � = sin(�0 � �);

x0� = x0 cos � + y0 sin � �� = �Dv0� ��;

y0� = y0 cos � � x0 sin � = �Du0�:

The quantity dt lies in the plane and increases along some direction d̂ de�ned to be

perpendicular to the orientation of the strips. Here we assume that the strips measure the

distance along r � �, i.e. d̂ = (� sin �; cos �; 0). For z measurements d̂ = (0; 0; 1) which

13



will be exploited later.

dt = d̂ � (~x� ~xc);

= �x sin � + y cos �

= y0� +
v0�

�
sin �s? +

u0�

�
(1� cos �s?);

= y0� +
u0�

�
� 1

�
cos(�0 � � + �s?):

The equation of the plane is x� = 0 or, writing it in terms of sin(�0 � � + �s?),

0 = �x0� � v0� + u0� sin �s? + v0� cos �s?;

= �x0� � v0� + sin(�0 � � + �s?);

allowing dt to be expressed as

dt = y0� +
1

�
u0� �

1

�

q
1� (v0� � �x0�)2;

= y0� �
2v0�x0� � �x20�

u0� +
p
1� (v0� � �x0�)2

;

where the second form is useful when � is small. We can also solve for s? using

sin �s? = �x0�u0� + �(y0� � dt)v0�;

cos �s? = 1� �x0�v0� + �(y0� � dt)u0�:

In the special case � = 0, dt = y0� � x0�(v0�=u0�) = y0� + v0�s?, where s? = �x0�=u0�.

The derivatives of dt with respect to the �ve helix parameters, @dt=@�i, are best ex-

pressed in terms of @s?=@�i. From the equation of the plane �x0� + u0� sin �s? � v0�(1�
cos �s?) = 0 we derive

@s?

@�
= �1

�

x0� + s?u�

u�
;

@s?

@�0
=

1

�

y0� + (1=�)(u0� � u�)

u�
=

dt

u�
;

@s?

@D
=
v0�

u�
;

where u� = u0� cos �s?�v0� sin �s? = cos(�0+�s?+�) and v� = v0� cos �s?+u0� sin �s? =
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sin(�0 + �s? + �). For � = 0 these simplify to

@s?

@�
=

1

2
s2?

v0�

u0�
;

@s?

@�0
=
y0� + v0�s?

u0�
=

dt

u0�
;

@s?

@D
=

v0�

u0�
;

Now we can write the derivatives of dt with respect to the �ve helix parameters:

@dt

@c
= 2

u� � u0�

�2
+ 2

�
s?

�
+
@s?

@�

�
v�;

@dt

@�0
= �+ v�

@s?

@�0
;

@dt

@D
= u0� + v�

@s?

@D
;

@dt

@�
= 0;

@dt

@z0
= 0:

When � = 0, these simplify to

@dt

@c
= u0�s

2
? + 2v0�

@s?

@�
;

@dt

@�0
= �+ v0�

@s?

@�0
;

@dt

@D
= u0� + v0�

@s?

@D
;

@dt

@�
= 0;

@dt

@z0
= 0:
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2.5. Silicon barrel (r � z)

We use the same notation as for the silicon barrel in r � � except that the quantity

measured by the electronics (up to an o�set) is z = d̂ � (~x � ~xc), where d̂ = (0; 0; 1). We

must simultaneously solve the equation of the plane and the helix equations. This yields,

as in the r � � case (see the last section for notation)

0 = �x0� + u0� sin �s? � v0�(1� cos �s?);

z = z0 + �s?:

Although it is possible to solve the �rst equation for s?, which can be used to �nd z, it

is simpler to use the formulas derived in the previous section for r�� silicon measurements:

dt = y0� +
1

�
u0� �

1

�

q
1� (v0� � �x0�)2;

= y0� �
2v0�x0� � �x20�

u0� +
p
1� (v0� � �x0�)2

;

sin �s? = �x0�u0� + �(y0� � dt)v0�;

cos �s? = 1� �x0�v0� + �(y0� � dt)u0�:

where dt is the distance along r� � from the point where the normal, proceding from the

origin, passes through the plane.

It is easy to express the partial derivatives in terms of @s?=@�i de�ned in the last

section:

@z

@c
= 2�

@s?

@�
;

@z

@�0
= �

@s?

@�0
;

@z

@D
= �

@s?

@D
;

@z

@�
= s?;

@z

@z0
= 1:
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2.6. Silicon disk at �xed z position

This is a device placed at z = zD measuring (up to an o�set) a coordinate in the

xy plane of the disk. As in the case of the silicon barrel, the equation of the plane is

~� � (~x � ~xc) = 0, where ~xc = (0; 0; zD). The quantity measured is x� = d̂ � (~x � ~xc) where

d̂ = (cos�; sin�; 0) lies in the direction of increasing x�. � = 0 (�=2) corresponds to x (y)

measurements. We �rst de�ne the rotated quantities

x� = x cos�+ y sin�;

y� = y cos�� x sin�;

u� = u cos�+ v sin�;

v� = v cos�� u sin�;

and similarly for x0�, y0�, u0� and v0�. From the helix equations we get s? = (zD � z0)=�

from which we compute

x� = x0� +
u0�

�
sin �s? �

v0�

�
(1� cos �s?);

which reduces, when � = 0, to x� = x0� + u0�s?.

The derivatives for x� are easily calculated:

@x�

@c
= 2

v0� � v� + �s?u�

�2
;

@x�

@�0
= �y�;

@x�

@D
= �v0�;

@x�

@�
= �u�

�
s?;

@x�

@z0
= �u�

�
:
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When � = 0, these derivatives become

@x�

@c
= �s2?v0�;

@x�

@�0
= �y�;

@x�

@D
= �v0�;

@x�

@�
= �u0�

�
s?;

@x�

@z0
= �u0�

�
:

3. Projections of helix including errors

It is frequently necessary to project a track to a particular wire or detector, for example,

to decide if a measurement should be added to the �t or just to provide a reference impact

point for a calorimeter. An important consideration is the errors of the projection. In

this section I will derive the errors for the following kinds of track projections: (1) axial

and stereo drift chamber wire, (2) cathode strip, (3) silicon barrel, (4) silicon disk, and (5)

surface of sphere of radius r.

As before, � represents the �ve track parameters, V� is the 5�5 covariance matrix and

A represents the derivatives of the projected quantity with respect to the helix parameters.

Vd is the covariance matrix of the projected quantities. A is either a 1�5 or 2�5 matrix,

depending on the number of projected quantities. Calling generically the two projected

quantities d1 and d2 (e.g., x and y), we get

AT =

0
BBBBBBB@

@d1=@c @d2=@c

@d1=@�0 @d2=@�0

@d1=@D @d2=@D

@d1=@� @d2=@�

@d1=@z0 @d2=@z0

:

1
CCCCCCCA

The covariance matrix of d1 and d2 is then given by Vd = AV�A
T .
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The discussion is considerably simpli�ed since most of the derivatives inA have already

been calculated in Section 2.1{2.6. The only case we have not considered is projecting to

a cylindrical surface of radius r.

3.1. Previous computations

1: Axial and stereo drift chamber wire (dw; z). dw and its derivatives were calculated

for axial and stereo layers in Section 2.1 and 2.2 while the corresponding values for

z were computed in Section 2.3.

2: Cathode strip (z). z and its derivatives were calculated in Section 2.3.

3: Silicon barrel (dt; z). These quantities and their derivatives were calculated in Section

2.4 and 2.5.

4: Silicon disk (x; y). These quantities and their derivatives were calculated in Section

2.6.

3.2. Projecting to a cylindrical surface of radius r

The quantities we wish to calculate are � and z, but the errors we want are �dt =

r sin ��� and �z, i.e., the errors in the r � � and z distances. We exploit the formulas of

Section 1.3 which express the helix coordinates as a function of r:

sin(�� �0) =
rc+ (D=r)(1 + cD)

1 + 2cD
=
D

r
+

(c=r)(r2 �D2)

1 + 2cD
;

cos(�� �0) = �

p
(1�D2=r2)[(1 + cD)2 � r2c2]

1 + 2cD
;

z � z0 = �s?;

sin cs? = c

r
r2 �D2

1 + 2cD
;

s? =

(
1

c
sin�1B for � = +1

1

c
(� � sin�1B) for � = �1

where � = +1(�1) corresponds to the outgoing (incoming) branch of the helix.
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The derivative matrix (transposed) is

AT =

0
BBBBBBB@

sin �

cos(���0)
r
2�D2

(1+2cD)2
1+cD

1+2cD

sin cs?
c2

� s?

c

r sin � 0

sin �

cos(���0)
1+2cD�2c2(r2�D2)

(1+2cD)2
� sin cs?

c

�
D

r2�D2 +
c

1+2cD

�
0 s?

0 1

1
CCCCCCCA

which reduces, when c = � = 0, to

AT =

0
BBBBBBB@

sin �

cos(���0)
(r2 �D2) �D

p
r2 �D2

r sin � 0

sin �

cos(���0)
� Dp

r2�D2

0 s?

0 1

1
CCCCCCCA

The covariance matrix for (�dt; �z) is Vd = AV�A
T .

4. Detector Misalignments and Track Fitting

Fitting with real detectors is complicated by the fact that they often have built in

misalignments, causing the track to be projected to an incorrect position which in turn

pulls the �tted parameters from their true values. The problem is often arises when several

detectors are used together to �t a single track. If the misalignments are small enough

to be approximated by linear parameters they can be incorporated very easily into the

�t. Moreover, by �tting many hundreds or thousands of tracks, the parameters describing

the misalignments can be extracted analytically from the pattern of residuals using a least

squares technique. This method for determining misalignment constants was described in

CBX 91{73.1

We parametrize the misalignment parameters as three o�sets along the coordinate

axes, dx, dy, dz, and three angles about these axes �x, �y, �z. The parameters are assumed

to be small enough so that terms of second order, e.g., dx�y, can be neglected. In this
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approximation the order in which the displacements and rotations are applied does not

matter. A point (x; y; z) is shifted by the amounts

�x = dx + z�y � y�z;

�y = dy + x�z � z�x;

�z = dz + y�x � x�y:

Each of these shifts has a linear e�ect on the measurement that can be expressed in terms

of a matrix B (following the notation introduced in CBX 91{73). We express �ym, the

shift in the measured quantity (detector dependent), as

�ym = B

0
BBBBBBBBB@

dx

dy

dz

�x

�y

�z

1
CCCCCCCCCA

where B must be determined separately for each detector as discussed below.

4.1. Axial drift chamber wire

The drift distance dw to the wire is given by

dw =
1

�

hp
1 + 2��w � 1

i
=

2�w

1 +
p
1 + 2��w

' �w(1�
1

2
��w)

where �w = u0�y � v0�x +
1

2
�(�2

x
+�2

y
), �x = x0 � xw and �y = y0 � yw. One can add

the corrections directly to the wire position or add them after the fact with the B matrix.

B is computed as

BT =

0
BBBBBBBBB@

vw

�uw
0

zuw

zvw

�(xwuw + ywvw)

1
CCCCCCCCCA
(1� ��w):

where uw = u0 + ��y and vw = v0 � ��x.
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4.2. Stereo drift chamber wire

As in the axial drift chamber case, one can apply the misalignment parameters directly

to the wire position rather than add them after the fact as a linear correction. The �rst

approach is complicated slightly by the fact that the direction cosines of the wire must be

rotated.

To calculate the e�ect of the misalignments, we write down the equation of the drift

distance dw from Section 2.2

dw '
ud

J
�w(1�

1

2
(1� �02)��w=J

2);

where �w = u0�y � v0�x +
1

2
�(�2

x
+ �2

y
), �x = x0 � xw � zp tan � sin�s and �y =

y0 � yw + zp tan � cos�s. Applying the displacements and rotations of the misalignments

allows B to be computed as follows

BT =

0
BBBBBBBBB@

vw

�uw
� tan �(uw cos�s + vw sin�s)

zpuw

zpvw

�(xw + zp tan � cos�s)uw � (yw � zp tan � sin�s)vw

1
CCCCCCCCCA
ud

J
(1� ud��w=J

2);

where uw = u0 + ��y and vw = v0 � ��x (see Section 2.2 for notation).

4.3. Cathode strips

Here the misalignment parameters are applied to the anode wire nearest to the cathode

strips. The relevant equation of motion is z = z0+�s?, where s? satis�es (see Section 2.3)

(1 + �dw) cos �s? = 1� �v0�x + �u0�y;

(1 + �dw) sin �s? = ��u0�x � �v0�y;

where �x = x0� xw and �y = y0� yw, with (xw; yw) being the coordinate of the wire. As

in the axial wire case it is probably simpler to add the corrections directly to the anode
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wire coordinates and then compute s? and z. Nevertheless, we can add the corrections

after the fact using B. First we eliminate dw from the equations above and get an equation

in s? only

sin �s?(1� �v0�x + �u0�y) + cos �s?(�u0�x + �v0�y) = 0:

Applying small changes to the axial wire (see the discussion above) allows the derivatives

of s? to be computed relative to each of the misalignment parameters, yielding

BT =

0
BBBBBBBBB@

��u=(1 + �dw)

��v=(1 + �dw)

�1
�zv=(1 + �dw)� yw

�zu=(1 + �dw) + xw

��(vxw � uyw)=(1 + �dw)

1
CCCCCCCCCA
(1� ��w);

where u = u0 cos �s? � v0 sin �s?, v = v0 cos �s? + u0 sin �s? and dw was computed in

Section 2.1.

4.4. Silicon barrel

This case is a little more complicated than the previous ones because it is not as

straightforward to apply the misalignments directly to the measurements. Misalignments

are also more important for silicon because the induced changes in the measurements are

of the same order of magnitude as the errors. From Section 2.4 the equation of the plane

is ~� � (~x � ~xc) = 0 or x cos � + y sin � � � = 0, where ~� = (cos �; sin �; 0) represents the

direction cosines of the outward normal to the plane and ~xc is an arbitrary point on the

plane which we choose to be the point where the normal, passing through the origin, strikes

the plane. � = ~� � ~xc is the perpendicular distance from the plane to the origin.

We �rst consider the case where the measured quantity is the \transverse distance"

in the r � � plane de�ned by dt = d̂ � (~x � ~xc), where ~x is the point where the tracks

hits the plane and d̂ is a unit vector lying along the direction of increasing dt. For r � �

measurements d̂ = (cos �; sin�; 0).
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The e�ect of misalignments can be computed straightforwardly from the equations for

dt and the plane by applying the displacements and rotations to ~�, d̂ and ~xc and including

the change in s?. Applying the misalignments to the quantities de�ning the plane yields

~�0 =

0
B@
cos �

sin �

0

1
CA+

0
B@

��z sin �
�z cos �

�x sin � � �y cos �

1
CA ;

d̂0 =

0
B@
� sin �

cos �

0

1
CA+

0
B@

��z cos �
��z sin �

�x cos � + �y sin �

1
CA ;

~x0
c
=

0
B@
�cos �

�sin �

0

1
CA+

0
B@

dx ���z sin �

dy +��z cos �

dz +�(�x sin � � �y cos �)

1
CA :

The equation of the plane is modi�ed to

x cos� + y sin � �� = dx cos � + dy sin � � (y cos � � x sin�)�z + z(�y cos � � �x sin �)

where (x; y; z) is the point where the track hits the plane. Since x, y and z are calculable

in terms of s? and the quantities on the right are small, we can expand the left side about

the solution for the perfectly aligned case and obtain �s?, the change in s?. The solution

is (see Section 2.4 for notation)

�s? =
dx cos � + dy sin � � (y cos � � x sin �)�z + z(�y cos � � �x sin �)

u�
:

To �nd the new measurement d0
t
= d̂0 � (~x0 � ~x0c) we apply the equations above and get

d0
t
= dt + v��s? � dy cos � + dx sin � + (x cos� + y sin �)�z + z(�x cos � + �y sin �);
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from which we obtain Br��

BT

r�� =

0
BBBBBBBBB@

(v� cos � + u� sin �)=u�

�(u� cos � � v� sin �)=u�

0

z(u� cos � � v� sin �)=u�

z(v� cos � + u� sin �)=u�

x(u� cos � + v� sin �)=u� � y(v� cos � � u� sin �)=u�

1
CCCCCCCCCA

=

0
BBBBBBBBB@

v=u�

�u=u�
0

zu=u�

zv=u�

(xu� yv)=u�

1
CCCCCCCCCA

The misalignments can also be expressed in terms of shifts and rotations local to the

silicon plane. The advantage is that the displacements decouple from the rotations (since

the axis of rotation is now the center of the silicon) and the formulas for the measurement

shifts are more compact and understandable. To begin, imagine the silicon plane rotated

about the z axis by �� and then shifted so that its center is at (0; 0; 0) and its normal is

(1; 0; 0). The local x�, y� and z� axes are, respectively, along the silicon thickness, width

and length. They are related to the global coordinates by

x� = x cos� + y sin � ��

y� = y cos � � x sin �

z� = z

u� = u cos � + v sin �

v� = v cos � � u sin�

The three displacements along the local axes are

dx� = dx cos � + dy sin �

dy� = dy cos � � dx sin � +��z

dz� = dz

while the three rotations can be written

�x� = �x cos � + �y sin �

�y� = �y cos � � �x sin �

�z� = �z

With these de�nitions the equation for the plane becomes x� = 0 and we get the simpi�ed
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equations

�s? = (dx� � y��z� + z��y�)=u�;

d0
t
= dt + v��s? � dy� + z��x�:

For measurements along z the r�� discussion applies except that the measured quan-

tity is z = d̂ � (~x � ~xc) with d̂ = (0; 0; 1) When misalignments are applied, s? changes as

described above while d̂ moves to

d̂0 =

0
B@
0

0

1

1
CA+

0
B@
��y
�x

0

1
CA ;

so that the z measurement changes to

z0 = z + ��s? � dz � x�y + y�x

= z� + ��s? � dz� +��y� � y��x�

which de�nes Bz

BT

z
=

0
BBBBBBBBB@

(�=u�) cos�

(�=u�) sin�

�1
�z(�=u�) sin� + y

z(�=u�) cos� � x

(�=u�)(x sin� � y cos �)

1
CCCCCCCCCA

4.5. Silicon disk at �xed z position

This case is fairly easy since the disk sits at z = zD in the xy plane (see Section 2.6).

The equation of the plane is ~� � (~x�~xc) = 0, where ~� = (0; 0; 1) is the outward normal and

~xc = (0; 0; zD). The quantity measured is x� = d̂ � (~x � ~xc) where d̂ = (cos�; sin�; 0) lies
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in the direction of increasing x�. Under the e�ect of misalignments, ~�, d̂ and ~xc become

~�0 =

0
B@
0

0

1

1
CA+

0
B@
��y
�x

0

1
CA ;

d̂0 =

0
B@
cos�

sin�

0

1
CA+

0
B@

��z sin�
��z cos�

�x sin�� �y cos�

1
CA ;

~x0
c
=

0
B@

0

0

zD

1
CA+

0
B@
dx + zD�y

dy � zD�z

dz

1
CA :

Since s? = (zD � z)=�, the change in s? from misalignments is �s? = (dz + y�x � x�y)=�,

which yields the new value of x�:

x0
�
= x� + u��s? � dx cos�� dy sin�� zD(�y cos�� �x sin�) + �z(y cos�� x sin�);

where u� = u cos�+ v sin� as de�ned in Section 2.6. These equations de�ne B:

BT =

0
BBBBBBBBB@

�dx cos�
�dx cos�
u�=�

z sin�+ y(u�=�)

�z cos�� x(u�=�)

y cos�� x sin�

1
CCCCCCCCCA
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