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1. Introduction

I present in this note a relatively new approach to track �tting that uses an iterative

algorithm to correctly account for the e�ects of multiple scattering and energy loss along

the track trajectory. This technique, known generally as a Kalman �lter, was �rst applied

to track �tting by P. Billoir1 and is now being used by several CERN experiments. Some

useful discussions have recently started appearing in the literature2;3. I implemented it in

the FTMONTE package some time ago but it is not used in our standard data reduction

yet. My intention is that this note will serve as a mathematical reference for an installation

into DUET sometime later this year.

My discussion here focuses exclusively on track �tting rather than track �nding, although

it is not hard to �gure out how the �lter can be used to select hits as well as �t them. I have

also left out a nice discussion of how the method can be applied to vertex �nding and �tting.

I will discuss that topic in a future note, but I will say in passing that I have implemented

a very powerful set of vertex �tting routines in KNLIB based on the �lter.

An extensive discussion of the motion of charged particles in magnetic �elds can be

found in CBX 92{454. Appendices 1 and 2 provide a useful set of formulas for dealing with

multiple scattering and energy loss when �tting tracks with the Kalman �lter.
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2.How Tracks are Measured

Charged particle tracks in high energy physics experiments are measured through a two

step process. First, detector measurements (e.g., drift chambers, straws, MWPCs, silicon

strips, etc.) are put through a pattern �nding algorithm to select a subset that seems con-

sistent with belonging to a single track. This set of measurements is then �t statistically

through a maximum likelihood method to determine the most probable set of track param-

eters consistent with the measurements. Errors in these parameters are estimated from the

measurement uncertainties and other factors, as discussed below. Measurements may be

further eliminated during the track �t if they are found to be of su�ciently poor quality or

not consistent with belonging to the track. Because of its well understood properties, the

least squares algorithm is most commonly used to �t the track parameters and estimate the

parameter errors.

In a constant magnetic �eld oriented along the z axis (such as found in CLEO) a charged

particle moves along a helical trajectory, a path consisting of circular motion in the x � y

plane combined with a constant velocity along the z axis. Unfortunately, several detector

related e�ects complicate the trajectory and therefore the �tting process: (1) inhomogeneous

magnetic �elds, (2) energy loss and (3) multiple scattering. I consider only dE=dx and

multiple scattering corrections in this note.

Energy loss from particle interactions with detector walls and gases causes the particle

to gradually decrease its radius of curvature, resulting in a spiralling-like e�ect for very soft

tracks. The energy loss has a deterministic (average) component that can be calculated via

the Bethe{Bloch dE=dx formula and a stochastic (
uctuating) piece caused by the large

Landau tail of the dE=dx distribution. Correcting the mean energy loss is straightforward

and is implemented at the DST level in CLEO, not in the DUET �t (see CBX 92-40 for

a discussion5). This \after the fact" correction is approximate but works pretty well since

most of the energy loss occurs before the outer drift chamber where the momentum is mainly

determined. It works less well for soft tracks where the momentum determination depends

more equally on measurements in the inner tracking chambers and the original track �t

attempted to �t the whole track to a single helix.

As a charged particle traverses a medium it is de
ected by many small angle scatters,

mostly due to coulomb interactions with atomic electrons. The scattering occurs in the

2



two perpendicular planes to the direction of motion and for small angles has a gaussian

distribution in each plane (uncorrelated), hence it is known as multiple coulomb scattering

or just multiple scattering. For larger angles, one should also consider the hard scattering

component which adds a non-gaussian tail to the multiple scattering distribution, but we

won't worry about this e�ect here.

3. The Standard Track Fit

To appreciate how the Kalman �tting algorithm works, let's compare it to the method

used in DUET which uses a general least squares �t. The helix is speci�ed by the 5 pa-

rameters � = (c; �0; D; �; z0) where c is 1/2 the inverse curvature of the track, �0 is the �

coordinate of the momentum at the r � � point of closest approach to the origin, D is the

signed distance of closest approach to the origin in r��, � = cot � and z0 is the z position at

the distance of closest approach to the origin. The equations of motion of tracks using these

parameters are described in CBX 92{45. The general least squares algorithm was discussed

in detail in CBX 91{726 and is summarized as follows using matrix notation. Suppose we

want to �t a set of n measurements y = (y1; y2; : : : yn) to a set of m parameters � (m = 5

here) through the relation yl = fl(�) for 1 � l � n. In track �tting, the meaning of yl

depends on the type of detector, i.e., it can be the distance of closest approach to a wire

(drift chambers and straws), the z coordinate (cathode strip) or a distance from a metal

strip in a plane (silicon strip detector).

Since the fl(�) are nonlinear we expand them about an approximate solution � = �A

(corresponding to a �rst guess of the track parameters): yl = fl(�A) + (@fl=@�i)(�i � �A i).

This linearization permits us to de�ne the �2 statistic

�2 =
X
l

(yl � (�A)� Ali(�l � �Al))
2=�2l

= (y � f(�A)�A(�� �A))
TV�1

y (y � f(�A)�A(�A � �))

� (�y �A(�� �A))
TV�1

y (�y �A(�� �A))
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where �y = y � f(�A), Ali = @fl(�)=@�i�A is a constant matrix of derivatives, and

V�1
y =

0
BBBB@
1=�21 0 � � � 0

0 1=�22 � � � 0
...

...
. . .

...

0 0 � � � 1=�2n

1
CCCCA

is the inverse of the covariance matrix of the measurements. It is diagonal for independent

measurements. Since the �2 measures how much the measurements \miss" the function, the

solution we want is that which minimizes �2, i.e., @�2=@�i = 0. The solution was found to

be � = �A +VAA
TV�1

y �y with covariance matrix V�, where V� = VA = (ATV�1
y A)�1.

In theory one should iterate this procedure to guarantee that the �nal track is close to the

�2 minimum.

4. Problems with the Standard Fit

The standard �t simultaneously �ts all the measurements and so can be regarded as a

global method. When the measurement errors �l are independent of each other it executes

in a time proportional to n, the number of measurements. The situation, however, changes

drastically when we introduce multiple scattering because a single scattering event a�ects the

drift distance measurements at all subsequent points. The measurement covariance matrix

is now Vy = Vmeas + VMS, where Vmeas is the original contribution from independent

measurement errors andVMS is the correlated component due to the presence of the multiple

scattering event and contains o� diagonal terms (see CBX 91{747 for the calculation ofVMS).

The problem now is obtaining V�1
y when Vy is no longer diagonal: the inversion of the

covariance matrix is prohibitively time consuming when the number of measurements n is

large (execution time is O(n3)). In the CLEO central detector, for instance, a track can have

as many as 71 measurements. Inverting a 71� 71 matrix at least once per track to account

for multiple scattering is enormously expensive in computer time and clearly unacceptable.

There is an extensive literature about the multiple scattering problem in high energy

physics. DUET partially accounts for multiple scattering by including a kink in the r � �

plane at the entrance to the DR drift chamber. The rest of it is included by a method

described in CBX 91{747 in which multiple scattering is ignored in the �t but its e�ects on
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the covariance matrix is accounted for by propagation of errors. The implementation does

not work well for soft tracks which bend signi�cantly and in any case is non-optimal because

the multiple scattering information is not used in the determination of the track parameters.

The standard �t also does not account for energy loss as the track propagates. Imple-

menting dE=dx corrections cannot be done by linear expansion because soft tracks lose large

amounts of energy in detector walls. In any case, the equations become very di�cult to write

down.

5. Track Fitting with the Kalman Filter

The Kalman �lter method, in contrast to the standard algorithm, is an iterative proce-

dure that is, in some sense, intuitively obvious (in fact, parts of the idea have been used for

years in track �tting). The procedure iteratively traces the track from its outermost point

to the origin, picking up measurements and accounting for multiple scattering and dE=dx

losses along the way. Unlike global methods which �t all the measurements to a single set

of track parameters, the �lter causes the track to \follow the measurements" through the

detector.

Let the n hits on the track trajectory be divided among r regions, labelled 1, 2, : : : r

starting from the outermost one, where the regions are separated from one another by ma-

terial boundaries. A particularly simple case is the one where every hit lies in a separate

region because, as we shall see, no matrix inversion need be done. Assume for the time being

that the parameters �1 and their covariance matrix V� 1 have somehow been determined in

region 1 (this avoids the tricky subject of starting the �t, a topic that I defer till later). The

track parameters in region 2 are obtained by minimizing a �2 which includes contributions

from the measurements in region 2 and the projected track from region 1. The projection

must include corrections to the track parameters from the expected energy loss in the ma-

terial (�1 ! �01) and to the track covariance matrix to account for multiple scattering and


uctuations in the energy loss (V� 1 ! V0
� 1). The formulas for these corrections can be

found in Appendices 1 and 2.

The change in �2 for region 2 can be written as a sum of two terms, the �rst accounting

for the measurements in region 2 and the second allowing for the pull of the track parameters
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from their previously �tted values (after dE=dx corrections), e.g.:

��2 = (�y2 �A2(�2 � �01))
TV�1

meas 2(�y2 �A2(�2 � �01)) + (�2 � �01)
TV0�1

� 1(�2 � �01)

where A2 li = @f2 l(�)=@�i are the derivatives of calculated drift distance in region 2 with

respect to the �ve parameters, �01 are the track parameters from region 1 corrected for

energy loss and V0
� 1 = V� 1 +V�MS +V� energy is the covariance matrix of the track from

region 1 corrected by the contributions from multiple scattering and energy 
uctuations. As

before, �y2 = y2� f(�01) represents the vector of di�erences between the measurements and

the predictions based on the parameters before �tting. The solution, obtained by setting

@�2=@�i to zero, is

�2 = �01 +VAgA
T
2V

�1
meas 2�y2;

V� 2 = VAg;

��2 = (�y2)
TV�1

meas 2�y2 � (�y2)
TV�1

meas 2A2VAgA
T
2V

�1
meas 2�y2;

where

VAg = (AT
2V

�1
meas 2A2 +V0�1

� 1)
�1 = V0

� 1(1 +AT
2V

�1
meas 2A2V

0
� 1)

�1:

The second form of VAg is preferred because it avoids the calculation of V0�1
� 1.

This procedure is repeated for the subsequent regions, each iteration improving the track

parameters and their covariance matrix, and terminates when the beginning of the track is

reached (usually when it breaks through the beam pipe). The net e�ect of the Kalman �lter

is to continuously update the track parameters and their covariance matrix.

If we include the measurements a few at a time the �tting process can be speeded up

by avoiding the 5� 5 matrix inversion in each iteration of the above formulas. This follows

from applying the Woodbury matrix inversion theorem6 to the calculation of VAg in the

above equations. The theorem states that if A is an invertible n � n matrix and U and V

are n� p matrices (with p < n), then

(A+ UV T )�1 = A�1 � A�1U(1 + V TA�1U)�1V TA�1

where (1+ V TA�1U) is a p� p matrix. Here n = 5 and p is the number of hits being added
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from a region. The formula for VAg now becomes

VAg = V� 1 �V� 1A
T
2

�
Vmeas 2 +A2V� 1A

T
2

��1
A2V� 1

We must be careful here to include the multiple scattering terms in the equation for Vmeas 2

as worked out in reference 7. Of course, if a large number of hits are included at one time the

inversion of the measurement covariance matrix becomes prohibitively expensive in computer

time. Appendix 3 shows a faster way of adding the hits that relies on a careful choice of step

size in the gas.

For the special case p = 1, i.e., hits added one at a time, the entire process becomes very

fast since the matrix inversion reduces to a simple arithmetic inverse. The expressions for

�2 and its covariance matrix V� 2 now become

�2 = �01 +VAgA
T
2

�yi

�2i
;

V� 2 = VAg = V� 1 �
V� 1A

T
2A2V� 1

�2i +A2V� 1A
T
2

:

These equations assume that the track has been traced as closely to the point of closest

approach as possible so that further multiple scattering and energy corrections need not be

done.

There are several interesting points about the Kalman �lter that should be noted:

1: The Kalman �lter method uses all the information and cannot, if used correctly, give

poorer track parameters by adding more measurements. For example, the contribution

from the back half of a curler would be small because multiple scattering errors would

reduce the signi�cance of the parameters determined in this region. Including these

hits would not cause the track parameters to worsen, unlike many other track �tting

methods.

2: Because the algorithm traces the track backwards, the parameters on the outer part of

the track are much more poorly determined than the ones on the inner part. Although

this is good for physics reasons (we want the parameters at the production point), it

means that the projection of the track to the outer region is unreliable. To do the
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projection properly, the track must be re�t by tracing it outward from the production

point to the outermost part of the drift chamber. It might be necessary to store these

parameters in ROAR, but probably not the covariance matrix. A study should be

performed to determine how accurately we need to carry out the projection.

3: The Kalman �lter is mathematically equivalent to the global �t when there is no

multiple scattering or energy loss. That this is true can be seen from the �rst form of

the solution for �2 above.

4: Every region does not have to contain measurements. If a particular region lacks

measurements, the track is simply projected through the region to the next one.

5: The natural iterativeness of this procedure allows tracks to be �t in pieces. For ex-

ample, tracks can be found and �t in the drift chambers and then projected to the

silicon with the full covariance matrix. The silicon hits can be added to the �t triv-

ially without having to do the entire �t again. Many experiements already exploit this

technique.

6: The Kalman �lter technique is sensitive, especially at low momentum, to the particle

hypothesis used in the �t (e, �, �, K or p). For best results, we will probably want to �t

each �t 5 times and store all the results, although we will need to devise a clever coding

mechanism at the ROAR level to avoid storing excessive numbers of bytes (especially

for the covariance matrices). An added bene�t of separate hypothesis �tting is that

we can adjust the cell drift times using the correct time of 
ight, rather than always

using the � hypothesis. It should also be possible to perform some crude particle ID

by comparing the pattern of measurement residuals.

7: The Kalman �lter is well suited to object oriented programming (OOP) techniques. In

OOP language, a region object takes an incoming track object, extrapolates the track

across its boundaries, modi�es the track parameters by adding its own measurements

(if any), and extrapolates the track to the next boundary, where the next region takes

over.
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6. Starting the Kalman Fit

I have avoided until now the issue of how to start the Kalman �lter �t. The problem

is that in the outer region there are only a few measurements and the track parameters

determined there are very poorly determined, causing the extrapolation into the next region

to be unreliable. Moreover, the track parameters in this region become extremely sensitive

to the vagaries of these few hits and, even worse, there may not be enough measurements to

start the �t, especially if the hits lack z information.

There seems to be little published information on how to solve this problem. However, I

have come up with a technique that might be robust enough work in data. The stratagem,

which is used in FTMONTE, goes as follows. The track is �rst �t using all the hits in the

outer drift chamber. I then multiply the 5� 5 track covariance by a scale factor in the range

of 200 to 1000. The track parameters with the new covariance matrix becomes the initial

track that I use to start the �t in region 1 (I pretend that the track enters region 1 with

these parameters). The scale factor must be small enough so that the track has some initial

\sti�ness" so that it cannot easily be pulled away from its starting value, but it must be

large so that the contribution of the drift chamber hits is not double counted in the �nal �t.

I have not carried out any systematic studies on how to start the �t in an optimal way.

Currently only the diagonal part of the covariance matrix are used and I scale the 5 terms

by a di�erent amount in FTMONTE (I use 200, 1000, 1000, 500, 500 for the 5 parameters).

It might also be useful to choose the outermost region to include more hits so that the track

is reasonably stabilized after the �rst region. These issues need to be explored more fully.
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Appendix 1

Multiple scattering formulas

Multiple scattering causes the particle to scatter in the two planes perpendicular to its

path without losing energy. The distribution of each angle is approximately gaussian with a

standard deviation given by

�� =
0:0141

p�

s
L

XR
�
p
HL

where p is the particle momentum in GeV/c, � is its velocity, L is the length of the path

and XR is the radiation length of the material. The track also changes position in the two

planes with a standard deviation in each plane given by

�x =
0:0141

p�
L

s
L

3XR
� L

r
HL

3

The position and angle changes in each plane are correlated with a correlation coe�cient

� =
p
3=2 ' 0:866. The scatterings in each plane are independent of one another.

Suppose we want to trace the track to a radius r. In the absence of multiple scattering

the track would end up at (x; y; z) (or (r; �; �) in spherical coordinates) and its direction

would be described by the spherical angles (�t; �t). Multiple scattering causes the track to

scatter in the plane oriented perpendicular to its path. The unit vectors de�ning the plane

are �̂t = (� sin�t; cos�t; 0) and �̂t = (cos �t cos�t; cos � sin�t;� sin �t).

The parameters will be changed by an amount

�� =M

0
BBBB@
sin �t��t

��t

�x�t=L

�x�t=L

1
CCCCA

where Mi1 = @�i= sin �t@�t, Mi2 = @�i=@�t, Mi3 = L@�i=@x�t and Mi4 = L@�i=@x�t , are

the derivatives of the track parameters with respect to the scattering quantities and x�t and

x�t are distances along the unit vectors �̂t and �̂t, respectively. Note that the perpendicular

plane is in general not tangent at radius r to the sphere centered at 0 because of the bending

of the track.
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Using the correlations, the contribution to the track covariance matrix due to multiple

scattering is

V�MS � h����T i = (HL)M

0
BBBB@

1 0 1=2 0

0 1 0 1=2

1=2 0 1=3 0

0 1=2 0 1=3

1
CCCCAMT :

The derivative matrix can be computed using the notation of CBX 92{45 with r2 = x2 + y2

and T =
q
p2
?
� 2a(xpy � ypx) + a2r2 = p? + aD = p?(1 + 2cD). In the interests of �tting

the results on a single page we write M as the direct sum of two 5 � 2 matrices, e.g.,

M = Mangle � Mposition, where Mangle and Mposition account for the angular and positional

multiple scattering e�ects, respectively. A straightforward but tedious calculation yields

Mangle =

0
BBBBBBB@

0 �1
2a�=p?

(p=p?)(p
2
?
� axpy + aypx)=T

2 a�(xpx + ypy)=T
2

�(p=p?)(xpx + ypy)=T �(a�=2)(r2 �D2)=T

0 �(p=p?)2

�p(xpy � ypx � ar2)=T 2 s? + �2p?(xpx + ypy)=T
2

1
CCCCCCCA

=

0
BBBBBBB@

0 �1
2a�=p?

pp?(1� �r sin�)=T 2 a�p?r cos�=T
2

�pr cos�=T �(a�=2)(r2 �D2)=T

0 �(p=p?)2

��pp?(D + c(D2 + r2)=T 2 s? + �2p2
?
r cos�=T 2

1
CCCCCCCA
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Mposition =

0
BBBBBBB@

0 0

�p(xpx + ypy)=T
2 �� cos �(p2

?
� axpy + aypx)=T

2

(p=p2
?
)(p2

?
� axpy + aypx)=T � cos �(xpx + ypy)=T

0 0

��p(xpx + ypy)=T
2 [�T 2 sin � + � cos �(p2

?
� axpy + aypx)]=T

2

1
CCCCCCCA

=

0
BBBBBBB@

0 0

apr cos�=T 2 �apz sin �(1� �r sin�)=T 2

p(1� �r sin�)=T ar cos � cos�=T

0 0

a�pr cos�=T 2 sin �[�T 2 + p2z(1� �r sin�)]=T 2

1
CCCCCCCA

where sin � = 1=
p
1 + �2 and s? is calculated from

T sin �s? = �(xpx + ypy);

T cos �s? = p? � �(xpy � ypx):

� is the angle between the radius vector and the track direction. Recall from CBX 92{45

that

sin� =
xpy � ypx

rp?
= rc�

D

r
(1 + cD);

cos� =
xpx + ypy

rp?
= �

q
(1�D2=r2)[(1 + cD)2 � r2c2];

where � = +1(�1) refers to the outgoing (incoming track). It is equal to the sign of xpx+ypy.
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Appendix 2

Energy loss formulas

There is a longer discussion of dE=dx corrections in CBX 92{40:5 The corrected momen-

tum p0 is calculated from the initial momentum p by p0 = p + �p, where �p is the energy

loss correction calculated by integrating the Bethe-Bloch formula

�p =

tZ
0

dp

dx
dx =

tZ
0

1

�

dE

dx
dx =

tZ
0

A

�3

�
ln

�
2mec

2�2
2

I0

�
� �2

�
dx

where t is the thickness of the material to be traversed, A is a constant that depends on the

material, Z is the atomic number, me is the electron mass, I0 is the ionization potential and

� and 
 are the usual relativistic parameters. We use the approximation I0 = Z0:9eV, and

take Z = 9 for representative media. A is determined from our knowledge of (dE=dx)min at

minimum ionization, the quantity listed in the Particle Data Book. The minimum occurs at

�
 = 3:40 and gives A = (dE=dx)min=11:528.

It is easier to write the di�erential equation in terms of � = p=m and the normalized

thickness x0 = x=t:

d�

dx0
=

�Emin

m
F (�)

F (�) =
(1 + �2)3=2

11:528�3

�
9:0872 + 2 ln(�)�

�2

1 + �2

�

where �Emin = (dE=dx)mint is the average energy loss su�ered by a minimum ionizing

particle passing through a distance t of material (including path length corrections from

non-normal tracks). The change in momentum can then be calculated from the integral

�p = m�� = �Emin

1Z
0

F (�)dx0

For moderate velocities (� > 0:7), F (�) is approximately constant giving �p ' �EminF (�).

For low velocities, where F (�) is changing rapidly, it is probably necessary to integrate the

d�=dx0 di�erential equation numerically using a method such as the Runge{Kutte technique,
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as discussed in CBX 92{40.5 The integration is aided by transforming to a new variable

� = �4 which removes the 1=�3 term from the di�erential equation and makes the numerical

solution far more reliable. The new equation using this variable is

d�

dx0
=

�Emin

m
F 0(�)

F 0(�) =
(1 +

p
�)3=2

4 � 11:528

�
9:0872 + 1

2
ln(�)�

p
�

1 +
p
�

�

Once the new momentum has been determined, the formulas in Section 1.4 in CBX

92{45 can be used to calculate the new helix parameters.
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Appendix 3

Stepping Through Gases

If several hits are to be �t simultaneously in a region, it is important to add the multiple

scattering corrections to the measurement covariance matrix Vmeas using formulas found

in thelast section of CBX 91{74.7 Since these corrections add o� diagonal terms to Vmeas,

computing its inverse is time consuming if a moderately large number of measurements are

added at one time. In this section I show that it is possible to ignore these corrections

during the �t providing that we choose a step size small enough. After the �t is complete,

one should add the multiple scattering contribution due to the material in the region to the

new track covariance matrix using the formulas in Appendix 1.

The criterion I use is that the expected deviation of the track over the whole region from

multiple scattering must be less than a certain amount, both in the r � � and r � z planes.

Let �� and �z be the maximum average deviation that will be tolerated in r� � and along

z, respectively. The RMS deviation in each plane from multiple scattering over a length L in

material of radiation length XR is (0:0141L=p�)
p
L=3XR, where the step �L must satisfy

0:0141�L

p�

s
�L

3XR
< ��;

0:0141�L

p� sin �

s
�L

3XR
< �z;

where 1= sin � is a geometrical e�ect accounting for the error in z at �xed radius for steeply

falling tracks. Rearranging, we �nd that �L must satisfy both

�L < �max
� =

 
3�2

�p
2�2XR

0:01412

!1=3

�L < �max
z =

�
3�2

zp
2�2XR sin2 �

0:01412

�1=3

Note that the step size is much more sensitive to the momentum (� (p�)2=3) than to

the radiation length of the gas (� X
1=3
R ). The following table shows maximum step lengths

for 50{50 Argon-Ethane (XR = 166 m) as a function of momentum (assuming sin � = 0:8)

with maximum allowed scattering �� = 50�m and �z = 100�m.

15



Maximum size step size (in cm) in 50{50 Argon{Ethane for �, K, p

based on �� = 50�m (�z = 100�m)

p � K p

�max
� (�max

z ) �max
� (�max

z ) �max
� (�max

z )

0.05 1.21 (1.66) 0.54 (0.74) 0.35 (0.48)

0.10 2.77 (3.79) 1.35 (1.85) 0.89 (1.22)

0.25 6.68 (9.14) 4.31 (5.89) 2.96 (4.05)

0.50 11.3 (15.5) 9.25 (12.7) 7.02 (9.61)

1.00 18.3 (25.1) 17.1 (23.5) 14.9 (20.4)

1.50 24.1 (33.0) 23.3 (31.9) 21.6 (29.6)

2.00 29.2 (40.0) 28.7 (39.2) 27.4 (37.5)

3.00 38.3 (52.4) 38.0 (52.0) 37.2 (50.8)

4.00 46.4 (63.5) 46.2 (63.2) 45.6 (62.4)

5.00 53.9 (73.5) 53.7 (73.5) 53.3 (72.9)
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