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Overview of plan

1st of several lectures on kinematic fitting

Focus in this lecture on theory

Plan of future lectures

Lecture 2: Introduction to KNLIB

Lecture 3: Vertex fitting with KNLIB

Lecture 4:  Fitting decay chains with KNLIB

References

KNLIB�http://www.phys.ufl.edu/~avery/knlib/knlib.html or�http://w4.lns.cornell.edu/~pra/knlib/knlib.html

Writeups on different aspects of fitting theory and constraints�http://www.phys.ufl.edu/~avery/fitting.html

What is Kinematic Fitting?

Kinematic fitting is a mathematical procedure in which one uses the physical laws governing a particle interaction or decay to improve the measurements of the process.



For example, the fact that the tracks coming from � EMBED Equation  ��� decay must come from a common space point can be used to improve the 4-momentum and positions of the daughter particles, thus improving the mass resolution of the � EMBED Equation  ���.



Physical information is supplied via constraints. Each constraint is expressed in the form of an equation expressing some physical condition that the process must satisfy. In the example above, each track contributes 2 constraints (r–( and z) to the vertex requirement, giving 8 constraints in all.



Vertexing is only one example. We can require instead that the invariant mass of the particles be equal to 1.8654. This is known as a mass constraint. We will discuss mass constraints later.

Implementation of Constraints

Constraints are generally implemented through a least-squares procedure. Each constraint equation is linearized and added, via the Lagrange multiplier technique, to the � EMBED Equation  ��� equation of the tracks using the covariance matrices of the tracks. Each track contributes a 5 parameter “measurement”, and the 5 ( 5 track covariance matrix is the generalization of the � EMBED Equation  ��� for a single measurement.



One then minimizes the � EMBED Equation  ��� simultaneously with the constraint condi�tions. The constraints “pull” the tracks away from their unconstrained values, and the resulting � EMBED Equation  ��� one obtains with n constraints is distributed like a standard � EMBED Equation  ��� with n degrees of freedom, if gaussian errors apply. A histogram of fits to, say, 10,000 decays would clearly show this distribution. Of course, since track errors are only approximately gaussian, the actual distribution will have more events in the tail than predicted by theory. Still, knowledge of the distribution allows one to define reasonable � EMBED Equation  ��� cuts.



For example, in the vertexing example � EMBED Equation  ���, there are a total of 8 constraints, but 3 unknown parameters must be determined (the � EMBED Equation  ��� vertex). The total number of degrees of freedom is thus 2*4 – 3 = 5.

Trivial Example

Let’s work out all the least squares machinery for a simple example. Suppose we have two measurements, � EMBED Equation  ��� and � EMBED Equation  ��� with (independent) errors 0.1. Now we impose the condition that we want the two var�iables to sum to 6. Why 6? I don’t know; just humor me for now.



Without the constraint condition, the total � EMBED Equation  ��� of the measurements could be written

� EMBED Equation  ���

where � EMBED Equation  ��� and � EMBED Equation  ��� are the initial measurements of � EMBED Equation  ��� and � EMBED Equation  ���, and � EMBED Equation  ���. Since there is no reason yet for the measurements to stray from their initial values, � EMBED Equation  ��� initially.



�The constraint is imposed using the Lagrange multiplier method, e.g.

� EMBED Equation  ���

where ( is a lagrange multiplier which must be determined (the fac�tor of 2 is inserted to simplify the algebra). We minimize the � EMBED Equation  ��� by setting the partial derivatives wrt � EMBED Equation  ���, � EMBED Equation  ��� and also ( to 0. This yields, using � EMBED Equation  ���

� EMBED Equation  ���

Using the first two equations to eliminate (, we solve for � EMBED Equation  ��� and � EMBED Equation  ���:

� EMBED Equation  ���

Error Analysis

The solution is only half the story, because what we’re really interested in is the error of the updated parameters. From the above discussion, we fully expect that the constraint will reduce the errors.



We calculate the errors for � EMBED Equation  ��� and � EMBED Equation  ��� directly from the definition of standard deviation, by averaging over all possible measurements. For example, for � EMBED Equation  ��� we get the variance:

� EMBED Equation  ���

where I used the independence of the initial measurements and � EMBED Equation  ���. The same result holds for � EMBED Equation  ���. Thus the errors are

� EMBED Equation  ���

which are substantially smaller than before.

�However, the fit has introduced a correlation between the updated parameters which was not originally present. We define the covariance of � EMBED Equation  ��� and � EMBED Equation  ��� as

� EMBED Equation  ���



Plugging in the expresssions for � EMBED Equation  ��� and � EMBED Equation  ��� yields

� EMBED Equation  ���

The familiar correlation coefficient � EMBED Equation  ��� is more commonly used to express the variation of one parameter with another. It is defined as 

� EMBED Equation  ���

Our simple constraint leads to � EMBED Equation  ���, i.e., every fluctuation of � EMBED Equation  ��� upward is matched by an equal fluctuation of � EMBED Equation  ��� downward. Other kinds of constraints lead to different correlations.

The Covariance Matrix

The error information for more than one variable is more elegantly expressed in terms of the “covariance matrix”. For example, let

� EMBED Equation  ���.



The covariance matrix of the two variables wrt one another is � EMBED Equation  ���, or in matrix form

� EMBED Equation  ���



It is clear from the definition that � EMBED Equation  ��� is symmetric (� EMBED Equation  ���) and the diagonal elements are just the squares of the standard deviations (� EMBED Equation  ���).



The initial and final covariance matrices are then

� EMBED Equation  ���

General Constrained Fits

Kinematic fitting involving tracks is more complicated for several reasons:

There are generally several constraints

The constraints are generally non-linear

The initial tracks are defined by 5 parameters apiece, each governed by a 5 ( 5 covariance matrix with off-diagonal terms.



Non-linearity is not a problem since we expand about a point close to the final answer anyway. We do this in the following way. Suppose that there are m variables ( and r constraints � EMBED Equation  ���. The constraints can be expanded to first order about the point � EMBED Equation  ���, e.g.

� EMBED Equation  ���

where � EMBED Equation  ��� and D is a r row by m column matrix of partial derivatives:

� EMBED Equation  ���

�For example, for our simple example of two variables satisfying the constraint � EMBED Equation  ��� expanded about the point � EMBED Equation  ���, we get � EMBED Equation  ��� and � EMBED Equation  ���. The constraint equation becomes

� EMBED Equation  ���

where � EMBED Equation  ��� and � EMBED Equation  ���.

�The complete � EMBED Equation  ��� equation for a set of m parameters ( with initial covariance matrix � EMBED Equation  ��� and r constraint equations � EMBED Equation  ��� can be written compactly in matrix form:

� EMBED Equation  ���

where � EMBED Equation  ��� are the unconstrained parameters, � EMBED Equation  ��� as before and

� EMBED Equation  ���



The reason I use m parameters rather than 5 is that there are typically several tracks involved, i.e., for n tracks � EMBED Equation  ���.



The first term in the � EMBED Equation  ��� expression is the general form for a set of m correlated variables. When the variables are uncorrelated, it collapses to the familiar expression

� EMBED Equation  ���

The second term is the sum of the products of each of r Lagrange multipliers � EMBED Equation  ��� by its corresponding constraint.

�A careful look at the equation shows it is identical to that given for the simple example:



� EMBED Equation  ����The solution is obtained by minimizing the � EMBED Equation  ���. We set to zero the partial derivatives of the � EMBED Equation  ��� wrt each of the � EMBED Equation  ��� variables and � EMBED Equation  ��� Lagrange multipliers, giving a total of m + r equations, enough to solve for all the � EMBED Equation  ��� and � EMBED Equation  ��� unknowns.



The solution is demonstrated in my first fitting note, CBX 91–72. Without going into details, the answer is



� EMBED Equation  ���



The last equation shows that � EMBED Equation  ��� is the covariance matrix for the Lagrange multipliers ( and that � EMBED Equation  ��� is the covariance matrix of the initial constraints � EMBED Equation  ���. Thus the number of standard deviations constraint i is from being satisfied by the unconstrained parameters is

� EMBED Equation  ���

�The following points should be noted about the solution.

The solution requires the inverse of only a single matrix, the r ( r matrix � EMBED Equation  ��� which is used to obtain � EMBED Equation  ��� (r is the number of constraints).

It can be shown that the new covariance matrix � EMBED Equation  ��� has diagonal elements smaller than the initial covariance matrix � EMBED Equation  ���. Thus the constraints are doing their job.

The � EMBED Equation  ��� does not require the evaluation of � EMBED Equation  ���, although the formal definition uses that matrix. This is a great simplification and permits the use track representations with non-invertible covariance matrices (such as that used in KNLIB).

The � EMBED Equation  ��� can be written as a sum of r terms, one per constraint. It’s then possible to look at each of these terms separately in order to get more discriminating power than what’s available from the overall � EMBED Equation  ���.
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