Vertexing and Kinematic Fitting, Part II:�Introduction to KNLIB

Paul Avery

University of Florida

Oct. 4, 1996

avery@phys.ufl.edu

http://www.phys.ufl.edu/~avery

Overview of plan

2nd of several lectures on kinematic fitting

Focus in this lecture on real fitting examples using KNLIB

Plan of lectures

Lecture 1: Theoretical foundations	(9/26/96)

Lecture 2: Introduction to KNLIB	(10/4/96)

Lecture 3: Vertex fitting with KNLIB

Lecture 4: Fitting decay chains with KNLIB

References

KNLIB�http://www.phys.ufl.edu/~avery/knlib/knlib.html or�http://w4.lns.cornell.edu/~pra/knlib/knlib.html

Writeups on different aspects of fitting theory and constraints�http://www.phys.ufl.edu/~avery/fitting.html

Overview of KNLIB

This is second version of KNLIB

Used by a small group since 1992 for CLEO data analysis. Uses the track list in seq/clinc/kwtrak.inc.

Older version used to reside in libftlib.a. Now available in libftknlib.a. Uses the track list in seq/clinc/kntrak.inc.

Provides framework for data analysis

Single track list (4-momentum based)

Kinematic constraints

Vertex, mass, energy, 4-momentum, etc.

Lots of utility routines

Transport through magnetic fields

Build new particle from others using vertex constraint

Return errors for mass, energy, p, (, (, etc.

Single and double precision versions

Double is recommended because of covariance matrix calculations

KNLIB Tracks

Unified track list

All particles stored in a single list kwtrak.inc (5000 total)

QQ tracks

Charged particles

Photons

� EMBED Equation ���s, � EMBED Equation ���s, (s

Virtual particles (D and B mesons

Fill routines for each type (new one for Kalman tracks)

User sees particles as track indices. Each mass hypothesis is a separate track.

CD track 1 (KN track 2 (() & KN track 3 (K)

Energy loss applied to charged particles before insertion.

New version

�
Track variables

TRKWKN(1-10,ik) (The “W” track parameters

1	� EMBED Equation ���

2	� EMBED Equation ���

3	� EMBED Equation ���

4	E

5	� EMBED Equation ���

6	� EMBED Equation ���

7	� EMBED Equation ���

8	� EMBED Equation ���

9	p

10	Q

Format greatly simplifies physics analysis and can be manipulated by a host of support routines.

Fitted variables are 1 – 7. Consequences

7 (7 covariance matrix

Can handle virtual particles (variable mass)

Vastly simpler math for implementing constraints

�
Other track variables

VTKWKN(ik)	7 (7 covariance matrix

ITYPKN(ik)	Particle type (QQ format)

STATKN(ik)	Status (0=unmeas., 1=measured, 2=fixed)

IPEXKN(ik)	Pointer to position in original list

IORGKN(ik)	Original list of track (e.g., CD, pi0, CC, etc.)

ICLSKN(ik)	User defined class ID

LXYZKN(ik)	TRUE if position info is available

LCOVKN(ik)	TRUE if covariance matrix available

LMFXKN(ik)	TRUE if particle has fixed mass

XMASKN(ik)	Mass used in 4-momentum

RMASKN(ik)	Spare mass variable

Kinematic fitting

Many constraints supported

Mass

Energy

Vertex

Total momentum

4-momentum

3-momentum

Many types of vertex constraints

Unknown 3-D vertex

Unknown 2-D vertex

“Fuzzy” vertex, e.g., beam spot

Vertex lying on a plane

Vertex lying on a line

Fixed vertex

Single track consistent with “fuzzy” vertex

Single track consistent with fixed vertex

Can fit before updating tracks

Allows checking on � EMBED Equation ���to see if fit was good

�
Functions to return track parameter errors

Mass

Energy

Momentum

(

(

Vertex utilities

KVAVRG: Weighted average of 2 vertices, including � EMBED Equation ���

KVDIFF: � EMBED Equation ��� that � EMBED Equation ��� and � EMBED Equation ��� are the same

KNVRTX: Find vertex using line approximation (not a fit)

sigmas of point on helix from vertex (future)

�
Build new KN track from n particles

Apply vertex constraint when building KN track

Vertexing requirement very flexible per input particle

Fast: only inverts n 2 (2 and one 4 (4 matrices

Fit decay sequences

Example: fit decay sequence shown below (measured particles shown in boldface) by combining particles starting at the bottom and building up the chain:

� EMBED Equation ���

�
Example

 subroutine anal1

 call kninit !Initialize knlib

 call kwpart !Calls qqpart to read in QQ particle definitions

 return

 end

�
 subroutine anal2

#include ”seq/clinc/anlclev.inc”

 logical ltesla

 real p4cm(4)

c Set B field, beam position and width

 ltesla = .FALSE.

 call ksbfld(bfie, ltesla)

 call ksbpos(bmpos(1,1), bmpos(1,2))

c Set initial state 4-momentum. Does not account for crossing

c angle. Call this routine only if you plan to use total

c 4-momentum constraint.

 p4cm(1) = 2. * enrg

 p4cm(2) = 0.

 p4cm(3) = 0.

 p4cm(4) = 0.

 call ksp4cm(p4cm)

 return

 end

�
 subroutine anal3

#include ”seq/clinc/anlccd.inc”

c Externals

 real p4mag, p3mag, ksgmas

 external p4mag, p3mag, ksgmas

c Local variables

 logical dedx_correct, lerror, lfirst, covar

 integer i, jK, jpi, ikK, ikpi, num_pi, num_K, type_pi, type_K

 integer Dtype, ikD0, list_D0(2), ivopt(2), update

 integer list(MXTRAK), pi_point(MXTRAK), K_point(MXTRAK)

 real vertex(3), dvertex(3), vtx(3), vz(3,3)

 real chisq_vtx, chisq_mass

 real p, mass, mass_diff, mass_diff_sig, mass_sig

 data lfirst/.TRUE./

c >>

 if(lfirst) then

 lfirst = .FALSE.

 do i=1,MXTRAK

 list(i) = i

 enddo

 endif

 call getcd !Get CD tracks

 call getcd !Get CC showers and pizeros

 call kncler !Clear KN tracks, vertices

 dedx_correct = .TRUE. !Use charged particle energy correction

c Load pi's into KN track list, returning KN track numbers in the

c array pi_point. Do not put ntrkcd in the first argument since

c ktcd2k returns the number of tracks actually added.

 num_pi = ntrkcd

 type_pi = 3

 call ktcd2k(num_pi, list, type_pi, dedx_correct, pi_point,

 * lerror)

c Load the same tracks into KN track list, but treat them as kaons,

c returning the KN track numbers in the array K_point.

 num_K = ntrkcd

 type_K = 4

 call ktcd2k(num_K, list, type_K, dedx_correct, K_point, lerror)

 call kgbpos(vertex, dvertex) !Get beam position and widths

�
c Loop over K's and pi's to build D0's

c Select K

 do 500 jK=1,num_K

 ikK = list_K(jK) !Get KN track number of K

 if(trkwkn(10,ikK) .lt. 0.) then

 Dtype = 27 !D0

 else

 Dtype = 28 !D0bar

 endif

c Select pi

 do 400 jpi=1,num_pi

 ikpi = list_pi(jpi) !Get KN track number of pi

 if(trkwkn(10,ikpi) .eq. trkwkn(10,ikK)) goto 400 !Q1 (Q2

�
c Build new particle with vertex contraint

 call knadd(ikD0) !Get new track index in KN list

 num_D0 = 2

 list_D0(1) = ikK

 list_D0(2) = ikpi

 ivopt(1) = 2

 ivopt(2) = 2

 update = 0 !Do not update input K, pi

 covar = .TRUE. !Build covariance matrix of D0

c Build new particle in slot ikD0 with vertex constraint,

c returning vtx, vz and chisquare

 call ucopy(vertex, vtx, 3)

 call knbvxk(num_D0, list_D0, ivopt, update, vtx, vz, covar,

 * chisq_vtx, ikD0, Dtype)

c These routines are in $C_CVSSRC/lsqfit

 mass = r4mag(trkwkn(1,ikD0)) !Compute mass

 p = r3mag(trkwkn(1,ikD0)) !Compute ptot

�
c Get mass - D0 mass, sig_mass, (mass - D0_mass) / sig_mass

 mass_diff = mass - 1.8654

 mass_sig = ksgmas(trkwkn(1,ikD0), vtkwkn(1,1,ikD0), 7)

 mass_diff_sig = mass_diff / mass_sig

c Can also test the quality of the mass deviation from nominal by

c performing a fit. Compute the chisquare of invariant mass being

c equal to the D0 mass

 update = 0 !Do not update the track parameters

 call kwmask(ikD0, 1.8654, update, chisq_mass)

400 continue

500 continue

 return

 end

Paul Avery	� PAGE �16�	Kinematic Fitting II

