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Overview of plan

· 1st of several lectures on kinematic fitting

· Focus in this lecture on theory

· Plan of lectures

· Lecture 1: Basic theory

· Lecture 2: Introduction to the KWFIT fitting package

· Lecture 3: Vertex fitting

· Lecture 4: Building virtual particles

· References

· KWFIT
http://www.phys.ufl.edu/~avery/kwfit/ or
http://w4.lns.cornell.edu/~avery/kwfit/

· Several write-ups on fitting theory and constraints
http://www.phys.ufl.edu/~avery/fitting.html

What is Kinematic Fitting?

Kinematic fitting is a mathematical procedure in which one uses the physical laws governing a particle interaction or decay to improve the measurements of the process.

For example, the fact that the tracks coming from 

 decay must come from a common space point can be used to improve the 4-momentum and positions of the daughter particles, thus improving the mass resolution of the 

.

Physical information is supplied via constraints. Each constraint is expressed in the form of an equation expressing some physical condition that the process must satisfy. In the example above, each track contributes 2 constraints (r–( and z) to the vertex requirement, giving 8 constraints in all.

Vertexing is only one example. We can require instead that the invariant mass of the particles be equal to 1.8654. This is known as a mass constraint. We will discuss mass constraints later.

Implementation of Constraints

Constraints are generally implemented through a least-squares procedure. Each constraint equation is linearized and added, via the Lagrange multiplier technique, to the 

 equation of the tracks using the covariance matrices of the tracks. Each track contributes a 7 parameter “measurement”, and the 7 ( 7 track covariance matrix is the generalization of the 

 for a single measurement.

One then minimizes the 

 simultaneously with the constraint condi​tions. The constraints “pull” the tracks away from their unconstrained values, and the resulting 

 one obtains with n constraints is distributed like a standard 

 with n degrees of freedom, if gaussian errors apply. A histogram of fits to, say, 10,000 decays would clearly show this distribution. Of course, since track errors are only approximately gaussian, the actual distribution will have more events in the tail than predicted by theory. Still, knowledge of the distribution allows one to define reasonable 

 cuts.

For example, in the vertexing example 

, there are a total of 8 constraints, but 3 unknown parameters must be determined (the 

 vertex). The total number of degrees of freedom is thus 2*4 – 3 = 5.

Trivial Example

Let’s work out all the least squares machinery for a simple example. Suppose we have two measurements, 

 and 

 with (independent) errors 0.1. Now we impose the condition that we want the two var​iables to sum to 6. Why 6? I don’t know; just humor me for now.
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Without the constraint condition, the total 

 of the measurements could be written




where 

 and 

 are the initial measurements of 

 and 

, and 

. Since there is no reason yet for the measurements to stray from their initial values, 

 initially.

The constraint is imposed using the Lagrange multiplier method, e.g.




where ( is a lagrange multiplier which must be determined (the fac​tor of 2 is inserted to simplify the algebra).

We minimize the 

 by setting the partial derivatives wrt 

, 

 and ( to 0. This yields, using 
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We solve for the unknowns 

, 

 and (:
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Error Analysis and Covariance Matrix

The solution is only half the story, because we also care about the errors and correlations of the updated parameters. From the above discussion, we expect that the constraint will reduce the errors of the original measurement.

We calculate the errors for 
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 and 

 directly from the definition of standard deviation, by averaging over all possible measurements.
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First write the deviations from the mean
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The error information for more than one variable is elegantly expressed in terms of the “covariance matrix”. For example, let



.

The covariance matrix of the two variables wrt one another is 

, or in matrix form




It is clear from the definition that 

 is symmetric (

) and the diagonal elements are just the squares of the standard deviations (

).

For our toy problem, the initial and final covariance matrices are




Thus the errors are
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which are substantially smaller than before.

The correlation coefficient 

 is commonly used to express the variation of one parameter with another. It is defined as 




Our simple constraint leads to 

, i.e., every fluctuation of 

 upward is matched by an equal fluctuation of 

 downward. This, of course, was expected. Other kinds of constraints lead to different correlations.

General Constrained Fits with Tracks

Kinematic fitting involving tracks is straightforward, although a bit more complicated:

1.  The initial tracks are defined by 7 parameters apiece

2.  Each track has a 7 ( 7 non-diagonal covariance matrix

3.  There are typically > 1 constraints

4.  The constraints are generally non-linear

Non-linearity is not a difficult problem since we expand about a point close to the final answer anyway. Suppose that there are m variables ( and r constraints 
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The constraints can be expanded to first order about the point 
[image: image11.wmf]a
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which can be written more naturally as a matrix equation
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where 

 and
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For example, for our simple example of two variables satisfying the constraint 

 expanded about the point 

, we get
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The constraint equation becomes




where 

 and 

.

Matrix formulation of (2 problem

Kinematic fits differ only in how the matrices D and d are specified.

The complete 

 equation can be written compactly in matrix form:
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where 

 are the unconstrained parameters, 

, and
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The first term in the 

 expression is the general form for a set of m correlated variables. When the variables are uncorrelated, it collapses to the familiar expression




The second term is the sum of the products of each of r Lagrange multipliers 

 by its corresponding constraint.

This works for the simple example:
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General solution of (2 problem

We set to zero the partial derivatives of the 

 wrt each of the m variables ( and r Lagrange multipliers (, giving a total of m + r equations, enough to solve for all the unknowns.

The solution is demonstrated in my first fitting note, CBX 91–72. Without going into details, the solution is
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with covariance matrix


[image: image20.wmf]V

V

V

D

V

DV

a

a

a

a

=

-

0

0

0

T

D


The auxiliary matrix 
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Physically, 
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 is the covariance matrix of the lagrange multipliers (.

The following points should be noted:

1.  Kinematic fitting problems are fully specified by the D and d matrices. Once they are set, the solution is determined by the above equations.

2.  The solution requires the inverse of only a single matrix, the r ( r matrix 

, which is used to obtain 

.

3.  It can be shown that the new covariance matrix 

 has diagonal elements smaller than the initial covariance matrix 

. Thus the constraints are doing their job.

4.  The 

 does not require the evaluation of 

, although the formal definition uses that matrix. This is a great simplification and permits the use track representations with non-invertible covariance matrices (such as that used in KWFIT).

5.  The 

 can be written as a sum of r terms, one per constraint. It’s then possible to look at each of these terms separately in order to get more discriminating power than from the overall 

.

Paul Avery
17
Basic theory 

_905284460

_905290257

_963342571

_963402368

_963646463

_963649237

_963733726

_963743000

_963649838

_963647920

_963648066

_963644961

_963645361

_963405448

_963407605

_963410599.vsd
x�

1�

x�

2�

6�

6�


_963407557

_963404537

_963343388

_963343596

_963400563

_963343649

_963343535

_963343310

_905291936

_905292659

_905292919

_905421433

_905422528

_905325721

_905292985

_905292691

_905292572

_905292626

_905292201

_905291031

_905291729

_905291811

_905291079

_905290378

_905290550

_905290362

_905287495

_905288376

_905289941

_905289985

_905289532

_905287610

_905288356

_905287976

_905287557

_905284722

_905286731

_905286977

_905287029

_905287063

_905286824

_905285220

_905286472

_905285213

_905284681

_905284715

_905284524

_905283937

_905284331

_905284366

_905284391

_905284358

_905284220

_905284228

_905284083

_905284213

_905283970

_905282025

_905283784

_905283795

_905282632

_905279315

_905281872

_905281951

_905279843

_905279267

