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Overview of plan

• 1st of several lectures on kinematic fitting

• Focus in this lecture on theory

• Plan of lectures
• Lecture 1: Basic theory

• Lecture 2: Introduction to the KWFIT fitting package

• Lecture 3: Vertex fitting

• Lecture 4: Building virtual particles

• References
• KWFIT

http://www.phys.ufl.edu/~avery/kwfit/ or
http://w4.lns.cornell.edu/~avery/kwfit/

• Several write-ups on fitting theory and constraints
http://www.phys.ufl.edu/~avery/fitting.html
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What is Kinematic Fitting?
Kinematic fitting is a mathematical procedure in which one uses the
physical laws governing a particle interaction or decay to improve
the measurements of the process.

For example, the fact that the tracks coming from D K0 → − + + −π π π
decay must come from a common space point can be used to improve
the 4-momentum and positions of the daughter particles, thus

improving the mass resolution of the D0.

Physical information is supplied via constraints. Each constraint is
expressed in the form of an equation expressing some physical
condition that the process must satisfy. In the example above, each
track contributes 2 constraints (r–φ and z) to the vertex requirement,
giving 8 constraints in all.

Vertexing is only one example. We can require instead that the
invariant mass of the particles be equal to 1.8654. This is known as a
mass constraint. We will discuss mass constraints later.
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Implementation of
Constraints

Constraints are generally implemented through a least-squares
procedure. Each constraint equation is linearized and added, via the

Lagrange multiplier technique, to the χ2 equation of the tracks using
the covariance matrices of the tracks. Each track contributes a 7
parameter “measurement”, and the 7 × 7 track covariance matrix is

the generalization of the σ 2 for a single measurement.

One then minimizes the χ 2 simultaneously with the constraint condi-
tions. The constraints “pull” the tracks away from their unconstrained

values, and the resulting χ2 one obtains with n constraints is

distributed like a standard χ2 with n degrees of freedom, if gaussian
errors apply. A histogram of fits to, say, 10,000 decays would clearly
show this distribution. Of course, since track errors are only
approximately gaussian, the actual distribution will have more events
in the tail than predicted by theory. Still, knowledge of the

distribution allows one to define reasonable χ2 cuts.

For example, in the vertexing example D K0 → − + + −π π π , there are a
total of 8 constraints, but 3 unknown parameters must be determined

(the D0 vertex). The total number of degrees of freedom is thus 2*4
– 3 = 5.
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Trivial Example
Let’s work out all the least squares machinery for a simple example.
Suppose we have two measurements, x1 and x2 with (independent)
errors 0.1. Now we impose the condition that we want the two var-
iables to sum to 6. Why 6? I don’t know; just humor me for now.

x1

x2

6

6

Without the constraint condition, the total χ2 of the measurements
could be written
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where x10 and x20 are the initial measurements of x1 and x2, and

σ σ1 2 01= = . . Since there is no reason yet for the measurements to

stray from their initial values, χ2 0=  initially.
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The constraint is imposed using the Lagrange multiplier method, e.g.
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where λ is a lagrange multiplier which must be determined (the fac-
tor of 2 is inserted to simplify the algebra).

We minimize the χ2 by setting the partial derivatives wrt x1, x2 and

λ to 0. This yields, using σ σ σ1 2= =
1
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We solve for the unknowns x1, x2 and λ:

λ
σ

= + −

= + −

= − −
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Error Analysis and
Covariance Matrix

The solution is only half the story, because we also care about the
errors and correlations of the updated parameters. From the above
discussion, we expect that the constraint will reduce the errors of the
original measurement.

We calculate the errors for x1 and x2 directly from the definition of
standard deviation, by averaging over all possible measurements.

σ x f x x x dx2 2≡ ( ) −( )
−∞

∞I
First write the deviations from the mean

δ δ δ

δ δ δ

x x x x x

x x x x x

1 1 1 10 20
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0 5
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The error information for more than one variable is elegantly
expressed in terms of the “covariance matrix”. For example, let

x = çåæ
ä
âã

x

x
1

2
.

The covariance matrix of the two variables wrt one another is
V x xxij i j≡ δ δ , or in matrix form

V x xx ≡ = çåæ
ä
âã

=
ç
åæ

ä
âã

δ δ
δ
δ

δ δ

δ δ δ δ
δ δ δ δ

T x

x
x x

x x x x

x x x x
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2
1 2

1 1 1 2

2 1 2 2

0 5

It is clear from the definition that Vx is symmetric (V Vxij x ji= ) and

the diagonal elements are just the squares of the standard deviations
(Vxii i= σ 2).
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For our toy problem, the initial and final covariance matrices are

V Vx x0
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Thus the errors are

σ σ

σ σ

x

x

1

2

2
0 071

2
0 071

= =
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which are substantially smaller than before.

The correlation coefficient rx x1 2
 is commonly used to express the

variation of one parameter with another. It is defined as

r
V

x x
x x

x x
1 2

1 2

1 2

=
σ σ

Our simple constraint leads to rx x1 2
1= − , i.e., every fluctuation of x1

upward is matched by an equal fluctuation of x2 downward. This, of
course, was expected. Other kinds of constraints lead to different
correlations.
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General Constrained Fits
with Tracks

Kinematic fitting involving tracks is straightforward, although a bit
more complicated:

1.  The initial tracks are defined by 7 parameters apiece

2.  Each track has a 7 × 7 non-diagonal covariance matrix
3.  There are typically > 1 constraints
4.  The constraints are generally non-linear

Non-linearity is not a difficult problem since we expand about a
point close to the final answer anyway. Suppose that there are m
variables αααα and r constraints H 0αααα( ) = :

H

H

Hr
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The constraints can be expanded to first order about the point αααα A:

0 = − +

≡ − +
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which can be written more naturally as a matrix equation
0 D d= +∆αααα

where ∆αααα αααα αααα= − A and
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For example, for our simple example of two variables satisfying the
constraint x x1 2 6 0+ − =  expanded about the point x A = 3 3,0 5 , we
get

D

d

=
=

1 1

0

0 5

The constraint equation becomes

D
∆
∆

x

x
1

2
0

ç
åæ
ä
âã =

where ∆x x1 1 3= −  and ∆x x2 2 3= − .
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Matrix formulation of χχχχ2 problem

Kinematic fits differ only in how the matrices D and d are specified.

The complete χ2 equation can be written compactly in matrix form:

χ α α α α λ αα

α

2
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where αααα 0 are the unconstrained parameters, ∆αααα αααα αααα= − A, and
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The first term in the χ2 expression is the general form for a set of m
correlated variables. When the variables are uncorrelated, it collapses
to the familiar expression

α α

σ
i i

i
i

−
∑ 0

2

2

3 8

The second term is the sum of the products of each of r Lagrange
multipliers λ i  by its corresponding constraint.

This works for the simple example:
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General solution of χχχχ2 problem

We set to zero the partial derivatives of the χ2 wrt each of the m
variables α and r Lagrange multipliers λ, giving a total of m + r
equations, enough to solve for all the unknowns.

The solution is demonstrated in my first fitting note, CBX 91–72.
Without going into details, the solution is

αααα αααα λλλλ

λλλλ αααα

= −

= +
0

0

0
V D

V D d

α
T

D ∆0 5

with covariance matrix

V V V D V DVα α α α= −
0 0 0

T
D

The auxiliary matrix VD and χ2 are

V DV D
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D
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T
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=
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Physically, VD is the covariance matrix of the lagrange multipliers λλλλ.
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The following points should be noted:

1.  Kinematic fitting problems are fully specified by the D and d
matrices. Once they are set, the solution is determined by the
above equations.

2.  The solution requires the inverse of only a single matrix, the r × r

matrix DV Dα 0

T , which is used to obtain VD .

3.  It can be shown that the new covariance matrix Vα  has diagonal
elements smaller than the initial covariance matrix Vα 0

. Thus the

constraints are doing their job.

4.  The χ2 does not require the evaluation of Vα 0

1− , although the

formal definition uses that matrix. This is a great simplification
and permits the use track representations with non-invertible
covariance matrices (such as that used in KWFIT ).

5.  The χ2 can be written as a sum of r terms, one per constraint. It’s
then possible to look at each of these terms separately in order to

get more discriminating power than from the overall χ2.


