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Overview of plan

• 3rd of several lectures on kinematic fitting

• Focus in this lecture on vertex fitting theory

• Plan of lectures
• Lecture 1: Basic theory

• Lecture 2: Introduction to the KWFIT fitting package

• Lecture 3: Vertex fitting

• Lecture 4: Building virtual particles

• References
• KWFIT

http://www.phys.ufl.edu/~avery/kwfit/ or
http://w4.lns.cornell.edu/~avery/kwfit/

• Several write-ups on fitting theory and constraints
http://www.phys.ufl.edu/~avery/fitting.html
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Theory

Equations of motion in solenoidal field

Written as function of arc length s, the path of the particle is a helix:
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where a = –0.299792458BQ and ρ = a / p.
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Creating the constraint equations

Suppose we want to force n tracks to come from a common space
point x. Assume further that the vertex has some “prior information”,
i.e., it is a beam spot at x0 with covariance matrix Vx0. (If the vertex

is completely unknown, we can just set the diagonal elements to
large values.)

The condition that track i pass through the vertex generates 2
constraints: (1) r–φ and (2) z
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where a BQi i= −0 299792458.

Qi  = charge

∆x x xi x i= − , etc.

For n tracks, there are 7n parameters and 2n constraints
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The χ 2 includes contributions from the track parameters α, vertex
parameters x and the constraints H xα,( ) = 0:
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α has length 7n
x has length 3

λ has length 2n

δα α α= − A (expanded around α A)

δx x x= − A (expanded around xA)

D is 2n × 7n (coefficient of track parameters D Hij i j= ∂ ∂α/ )

E is 2n × 3 (coefficient of vertex parameters E H xij i j= ∂ ∂/ )

d is 2n × 1 (constant term d Hi i A A= αα ,x0 5)

Tracks

Vertex

Constraints
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The crucial fact about the vertex constraint is that the constraints do
not mix tracks.
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This fact vastly speeds up the calculation for the solution because the
matrices that need to be inverted can be reduced to block diagonal
form.

V DV DD
T

T

T

n n n
T

D V D

D V D

D V D

= =

�

�

�
�
�
�

�

�

�
�
�
�

−

−

α 0
1

1 10 1

2 20 2

0

1

3 8
�

2 × 2



Paul Avery 7 Vertex fitting

The solution for α and x can be written (see CBX 98–37 for a
detailed discussion)
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where δα α α= − A and δx x x= − A are the deviations of the
parameters from their expansion points.

The covariance matrices are
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This solution requires that we invert the following
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So we have found an efficient solution.
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Comments About Solution

Vertex covariance matrix

The vertex covariance matrix Vx is an average of original covariance
matrix and a sum over track info
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Track correlations

Note the structure of the updated track covariance matrix

V V V D V DV V D V EV E V DVxα α α α α α= − +0 0 0 0 0
T

D
T

D
T

D

Term 2 does not cause track - track correlations, since Vα 0, D and

VD are block diagonal. Equivalent to fitting each track separately
though the same fixed space point.

Term 3 causes track-track correlations only through the “tiny” 3× 3
Vx matrix. Track-track correlations can thus be calculated by saving
some of the intermediate matrices.

Improvement due to fit
to fixed vertex point.

Worsening due to “wiggle”
of vertex point.
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Vertex Fitting as a Kalman
Problem

Track fitting problem
Want to find 5 helix parameters α and 5 × 5 covariance matrix Vα  by
adding in the information from n measurements.

Method is to move to measurement point, then average the
measurement (usually a 1 dim. quantity) with the track to get
improved track parameters and covariance matrix. This is repeated
until all measurements are included.
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• Let α0, Vα 0 be the old track parameters & covariance matrix.

• Let ∆y, Vy be the measurement deviation & its covariance matrix.

•  Let A represent the derivative of the measurement with each of the
5 track parameters.

Then the new track parameters and covariance matrix are
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Note that only a 1 × 1 matrix has to be inverted at each step.

If the track does not have to be moved or modified between
measurements, then all the measurements can be added at once, at the
cost of inverting an n × n matrix.
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Vertex fitting
Want to find 3 vertex parameters x and 3 × 3 covariance matrix Vx
by adding information from n tracks.

Each track “measurement” consists of 7 parameters α0 and a 7 × 7
covariance matrix Vα 0

Method is to average the vertex with the track to get improved vertex
parameters and covariance matrix. This is repeated until all tracks are
included.

The only difference from the track fitting problem is that a constraint
is used to average the track info with the vertex information.
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Let the index i refer to track i. Assume we have a vertex x0 with
initial covariance Vx0 to which we want to add track i. The following

equations update the vertex parameters, covariance matrix and χ2.
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where β δα0 0i i i iD d= + . Repeat until all tracks are added.

It is also possible to make a quick algorithm where tracks can be
included or discarded. Only 3 sums needed:

1. Vector of length 3 E Vi
T

Di i
i

β0∑
2. 3 × 3 matrix E V Ei

T
Di i

i
∑

3. Scalar ∆χ i
i

2∑  as described above

A track can be removed easily from the sums if its ∆χ2 contribution
is too large. This process is similar to that used for removing hits
from a Kalman fit.


