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Directly Determining Lifetime Using a 3-D Fit

I derive in this note a fitting algorithm that directly determines the proper lifetime
and error of a single particle decay using all track and beam information, not just
the information in the y coordinate. The method works for charged or neutral
particles of arbitrarily long lifetime and has been implemented in KWFIT . I
demonstrate through high statistics Monte Carlo studies that the method yields
correct results and is unbiased to a high degree.

I do not address in this note the problem of obtaining an accurate starting point
when tracks from a recoiling long-lived particle (i.e., anti-charm) are included in
the fit. This problem and its potential resolution will be discussed in a separate
note.

I Introduction
To introduce the subject of lifetime determination, consider the diagram below, which shows

a 0D  decaying to K π− +  at a secondary vertex after being produced in the beam interaction
region.
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In this example the 0D  is produced at a point near the beam center and travels a certain distance

(the “flight distance”) before decaying into its K π− +  daughters. These daughters are
subsequently measured by the tracking system.
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An accurate determination of the lifetime requires that both the beginning and endpoint of the
0D  flight vector be determined accurately. The endpoint is determined by vertex fitting with a

package like KWFIT , and its measurement accuracy is determined purely by the tracking errors
of the daughter particles. The beginning point is determined by the beam spot size augmented

perhaps, as shown above, by other tracks produced in association with the 0D . The lifetime as
determined in CLEO typically only uses the y portion of the flight vector because the CESR
vertex profile (330 µm × 7 µm × 1.7 cm) provides an extremely small uncertainty in y. Although
the x and z measurements can be improved by including extra tracks emerging from the collision
point, the presence of tracks from anti-charm particles (which also travel a finite distance) can
cause a bias in the starting point location so they are frequently not included in high precision

lifetime determinations. The 4-momentum errors of the 0D  are ignored, generally because they
are felt to play a negligible role for short lifetimes. I address this point later in the paper.

II Proper lifetime determination for simple cases

Calculation of proper lifetime with one coordinate

Let’s see how the lifetime can be determined from the y information for the 0D K π− +→
case. Since the flight path is a straight line, the equation of motion of the particle is

/p d yy y sp p= − , (1)

where py  and dy  are the y coordinates of the production and decay points, respectively, p and

yp  are the total and y component of momentum at the decay point, respectively, and s is the

flight distance. Since we are trying to determine the proper time and not the flight distance, we
use the relativistic formula ( )/s ct c p m cβ γβ τ τ= = = , where cτ  is the proper time measured in

units of distance and m is the mass. Substituting this expression into eqn. (1) yields
/p d yy y c p m= − τ , or

( )d p
y

m
c y y

p
= −τ (2)

The error in cτ  is easily calculated by simple propagation of errors to be

c y
y

m

pτσ σ ∆= (3)

where 2 2 2
d py y y∆ = +σ σ σ , assuming that dy  and py  are independent and neglecting contributions

from momentum and mass uncertainties.

Proper lifetime determination with two uncorrelated coordinates

Suppose we now include the information from both the x and y coordinates in the calculation
of the lifetime. In this case the equations relating the production point and decay point, using
obvious notation, are
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/

/

p d x

p d y

x x c p m

y y c p m

= −

= −

τ

τ
(4)

We can solve for cτ  naively by multiply the x and y equations by xp  and yp , respectively, and

adding. This yields

( ) ( )2 x d p y d p
m

c p x x p y y
p⊥

 = − + − τ (5)

with error

2 2 2 2
2c x x y y

m
p p

p
τσ σ σ∆ ∆

⊥
= + (6)

where 2 2 2
d px x x∆ = +σ σ σ , again assuming that the measurements of the production and decay

points are not correlated.

Equation (6) is utterly, gloriously wrong! Well, not exactly wrong, but not optimal. Compare
equation (3) with equation (6). If xσ ∆  happens to be huge, it will dominate the error in cτ
irrespective of the y contribution. This makes no sense from the point of view of information
theory, since adding new information (the x coordinate) should yield an error no larger than what
was obtained by ignoring it altogether.

The reason why the error calculation in eqn. (6) is not optimal is that eqn. (5) is not the only
solution for cτ  in eqns. (4). The general unbiased solution (unbiased means that averaging over
an infinite number of experiments gives the correct answer) is

( ) ( ) ( )
1

d p d p

x y

x x y y
c Am A m

p p

− −
= + −τ (7)

where A is not determined. The standard way of specifying A is to choose a value that minimizes
the error on cτ . This procedure is straightforward and yields

( )
( ) ( )

2 2 2

2 2 2 2 2 2

/ /

/ / / /

x x

x x y y

p m
A

p m p m

σ

σ σ

∆

∆ ∆

=
+

(8)

where xσ ∆  and yσ ∆  are defined as before. The error for cτ  is now easily determined to be

( ) ( )
2

2 2 2 2 2 2

1

/ / / /
c

x x y yp m p m
τσ

σ σ∆ ∆

=
+

(9)

The same result is obtained by using a more general analysis discussed in the next section.

Equation (9) includes all the information in an optimal way, and is easily seen to have the
correct limiting behavior. For example, ignoring the x information in eqn. (9) ( xσ ∆ = ∞ )

reproduces eqn. (3).
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 Proper lifetime lifetime with three uncorrelated coordinates

Extending the above result to three dimensions (assuming that the x, y and z variables are
uncorrelated and that the momentum errors can be neglected) is trivial and yields the solution

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2
2 2 2 2 2 2 2 2 2

1

/ / / / / /

yx c c cz
d p d p d p

x y z

c
x x y y z z

pp p
c x x y y z z

m m m

p m p m p m

∆ ∆ ∆

∆ ∆ ∆

= − + − + −

=
+ +

τ τ τ

τ

σ σ στ
σ σ σ

σ
σ σ σ

(10)

In CLEO II.V and CLEO III, the resolution of the 0D  decay point is of the order of 60 µm in
each coordinate. However, if only beam spot information is used at the starting point, then the x
and z errors are very large, 330 µm and 1.7 cm, respectively, and therefore contribute little to the

answer. On the other hand, if tracks produced in association with the 0D  are included, they can
be used to determine the starting point in the other coordinates with roughly the same resolution
as those of the decay point, significantly improving the lifetime error. While including these
tracks we must be mindful of the previously stated caveat that tracks from anti-charm particles
must not be allowed to bias the measurement.

III Calculation of proper lifetime for the general case

Note: you may proceed directly to the next section if you are not interested in this general
derivation and only want to find out how to use the KWFIT  implementation.

Having worked out the simple case of a neutral particle with uncorrelated measurements and
no momentum errors, I now turn to the general problem of a charged or neutral particle moving
through a fixed magnetic field before decaying.

For simplicity, I only show here the equations for a solenoidal field, although the
implementation in KWFIT  includes the more general case of an arbitrary, but fixed, orientation.
The equations relating the production and decay points in a solenoidal field are [1]

( )

( )

sin 1 cos

sin 1 cos

yx
p d

y x
p d

z
p d

pp
x x s s

a a
p p

y y s s
a a

p
z z s

p

= − − −

= − + −

= −

ρ ρ

ρ ρ (11)

where 0.299792458a Bq= − , B is the field strength in Tesla, q is the charge, ρ = a p/ ,

( ), ,p p px y z  is the production point, ( ), ,d d dx y z  is the decay point and ( ), ,x y zp p p  is its 3-

momentum there. They are functions of s, the flight distance measured from the point
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( ), ,p p px y z  to ( ), ,d d dx y z . We eliminate s in favor of the proper lifetime cτ  using

( )/s ct c p m cβ γβ τ τ= = = , yielding the new equations

( ) ( )( )

( ) ( )( )

sin / 1 cos /

sin / 1 cos /

yx
p d

y x
p d

z
p d

pp
x x ac m ac m

a a
p p

y y ac m ac m
a a

p
z z c

m

= − − −

= − + −

= −

τ τ

τ τ

τ

(12)

The lifetime cτ  is determined by recognizing that eqns. (12) represent constraint conditions.
Since there are three equations and one unknown (cτ ), there are a total of two degrees of
freedom (astute readers will recognize that these are the same equations one starts with when
deriving the vertex constraint, except that cτ  is usually eliminated to yield two equations).

We can apply the machinery in reference [1] to solve for cτ  and its errors, while at the same
time improving the track parameters and the starting point. First we separate the variables which
are known within errors (α) from those which are not known (cτ). The vector α contains 10

variables, the 7 track parameters at the decay point and the production point ( ), ,p p px y z .

x

y

z

d

d

d

p

p

p

p

p

p

E

x

y

z

x

y

z

 
 
 
 
 
 
 
 =  
 
 
 
 
 
   

α (13)

The 3 equations describing the constraints can be written generally as ( )cτ =H 0α, , where

( )

( ) ( )

( ) ( )

sin / 1 cos /

sin / 1 cos /

yx
p d

y x
p d

z
p d

pp
x x ac m ac m

a a
p p

c y y ac m ac m
a a

p
z z c

m

 
 − + + −  

 
 

 = − + − −  
 
 − +   

H α,

τ τ

τ τ τ

τ

(14)

Expanding around a convenient point ( ),A Acτα  yields the linearized constraint equations
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cδ δ τ= + +0 D E dα , (15)

where D and E are the derivatives of H with respect to α and cτ, respectively, δα α α= − A  and

Ac c cδ τ τ τ= − . The constraints are incorporated using the method of Lagrange multipliers in

which the χ2 is written as a sum of two terms, e.g.

( ) ( ) ( )2 1
0 0 0 2

T T cχ δ δ τ−= − − + + +V D E dαα α α α λ α , (16)

where λ is a vector of 3 unknowns, the Lagrange multipliers, and there is one unknown, cτ. Note
that Gα α α � A and Ac c cδ τ τ τ= −  are the departures of the variables from their respective

expansion points. Minimizing the χ2 with respect to α, cτ and λ yields three vector equations

which can be solved for α, cτ and their covariance matrices:

( )1
0 0

T

T

c

δ δ

δ δ τ

− − + =

+ + =

V D 0

E 0

D E d 0

α α α λ

λ =
α

(17)

The last equation demonstrates clearly that the solution satisfies the constraints. The solution for
cτ and its covariance matrix is straightforward [1], though the matrix algebra is a bit messy:

( )
0

1

T
c

T
c D

c
−

= −

=

V E

V E V E

λτ

τ

δ τ
(18)

The auxiliary quantities 0λ  and DV  are defined as

( )

( )
0 0

1

D

T
D

−

= +

=

V D d

V DV Dα 0

λ αδ
(19)

where δα α α0 0= − A . The same machinery also yields the updated α measurements

0 0

0

T

D c

= −

= +

V D

V E
αα α λ

λ λ δ τ
(20)

as well as their covariance matrix and correlation with cτ :

( )
0 0 0 0 0

0cov ,

T T T
D D c D

T
D cc

= − +

= −

V V V D V DV V D V EV E V DV

V D V EV

α α α α α α

αα

τ

ττ
(21)

The χ2  is given by

( )2
0

Tχ δ= +D dλ α (22)

Let’s check the algorithm by deriving eqn. (10). We assume that the charge is zero (straight
line motion) and that the momentum and mass are constant, i.e., their errors are zero. The
equations relating the production and decay points are written in the standard constraint form
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0

0

0

x
p d

y
p d

z
p d

p
x x c

m
p

y y c
m
p

z z c
m

− + =

− + =

− + =

τ

τ

τ

(23)

First set the expansion points ( ), , , , , , , , ,T
A x y z d d d p p pp p p E x y z x y z=α  and 0Acτ = .

Furthermore, set 0 A=α α  for simplicity. The D, d and E matrices are calculated by taking

derivatives of eqns. (23) with respect to the track parameters and cτ, noting that the momenta and
mass can be treated as constants. This yields

0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 1 0 0 1

/

/

/

p dx

y p d

z p d

x xp m

p m y y

p m z z

− 
 = − 
 − 

 − 
  

= = −  
    −   

D

E d

(24)

The covariance matrix, assuming diagonal errors since the errors are supposed to be uncorrelated
in this simple example, is

2

2

2

0

0

0

0

0

0

0

d

d

d

x

y

z

σ

σ

σ

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
   

Vα 0 (25)

For simplicity I set the errors for the starting point equal to zero. These can be put back in with

only a little more complication. The matrix ( ) 1T
D

−
=V DV Dα 0  is easily calculated:
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12 2

2 2

2 2

1/

1/

1/

d d

d d

d d

x x

D y y

z z

σ σ

σ σ

σ σ

−   
   
   = =
   
         

V (26)

Finally, we calculate the lifetime error ( ) 12 T
c c Dτ τσ

−
= =V E V E :

( )

1
2

2

2

122 2

2 2 2 2 2 2

1/ /

/ / / 1/ /

/1/

1 1 1

d

d

d

d d d

x
x

c x y z y y

zz

yx z

x y z

p m

p m p m p m p m

p m

pp p

m m m

−

−

        =            

 
 = + +
  

V τ

σ

σ

σ

σ σ σ

(27)

The solution for cτ  is found from ( )0
T

c Dc ττ δ= − +V E V D dα .

( )

( ) ( ) ( )

2

2

2

2 2 2

2 2 2

1/

/ / / 1/

1/

d

d

d

d d d

x p d

c x y z y p d

p dz

yx c c cz
d p d p d p

x y z

x x

c p m p m p m y y

z z

pp p
x x y y z z

m m m

  −   = − −      −   

= − + − + −

V τ

τ τ τ

σ

τ σ

σ

σ σ σ
σ σ σ

(28)

Equations (28) are identical to eqns. (10) except that we assumed the production point errors to
be zero here. Putting in these errors is trivial and is left to the reader as an exercise [2].

The constraint equation approach outlined in this section has the following advantages when
determining the proper lifetime. First, it automatically uses all available information, including
all coordinate and momentum measurements (momentum measurements can be important for
long-lived particles like the sK  and Λ). The method reduces to the y-only method used by

standard CLEO analyses by making the x and z errors infinite and all momentum errors zero.
Second, the algorithm works with either charged or neutral particles. Finally, the proper lifetime
and improved values of the track parameters and initial starting value, including their errors and
correlations, are directly computed.

In the next section I show how the technique is implemented in KWFIT . Monte Carlo
studies based on this approach are discussed later.
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IV KWFIT routines for fitting lifetime
This algorithm derived in the previous section has been encoded in several KWFIT  routines,

listed briefly here. The full calling sequences can be found in the KWFIT  web documentation
[3]. Before calling these routines, you must first compute the track parameters at the decay point.
The routine kvir_unknown  builds a virtual particle from its daughters. Calls to one of the
following routines can then be made to determine the lifetime.

• kvtx_beam_lifetime This routine is used most frequently. You supply a KWFIT  track at the
decay point, and the routine takes the beam position and size as the initial production point
information to determine cτ  and its covariance matrix, which are returned. You must have
previously set the beam spot and size with a call to kset_beam_position.

• kvtx_known_lifetime This routine is more general than the previous one in that the initial
production point estimate and its covariance matrix are set in the argument list. Again you
supply a KWFIT  track at the decay point and cτ  and its covariance matrix are returned.

• kvtx_fixed_lifetime You supply a KWFIT  track and a fixed production point, and cτ  and
its covariance matrix are returned. This routine is normally not used with real data, since the
production vertex has a finite size, but it is useful for testing Monte Carlo samples.

After the fit is performed, you may call the routine kget_lifetime_covar to return the full
4×4 covariance matrix of the production point (elements 1-3) and cτ (element 4). This extra
information can be useful in situations requiring sensitive lifetime information.

V Monte Carlo studies of lifetime algorithm

Simple Monte Carlo description

I have tested the KWFIT  routines described in the previous section using a standalone
Monte Carlo which uses the MCFAST geometry structures and input routines [4]. This geometry
is general enough to accurately describe most of CLEO 2’s tracking system, including energy
loss and multiple scattering. However, I transferred the information to a simplified geometry in
which each silicon layer is represented by a cylinder having the correct thickness and average
radius and each drift chamber layer is represented by a thin measuring layer having the correct
stereo angle. I used the best numbers I could find for the resolution and efficiencies of the
silicon, VD and DR detectors.

The Monte Carlo traces particles through the tracking system and intersects them at each
surface, making hits that follow the resolutions and efficiencies of each layer. No scattering or
energy loss is done during the tracing stage, but the tracks are later Kalman fit from the outside
in to include the effects of multiple scattering. The Kalman fit only determines the covariance
matrix of the track at the origin. The true track parameters are smeared by the covariance matrix
to give the so-called “measured track parameters”. This fitting process guarantees that the
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parameters are exactly Gaussian, though retaining the exact correlations from the covariance
matrix. Such exactly Gaussian-smeared tracks are useful for determining any biases that may
creep in from kinematic fitting.

The Kalman fit particles obtained from this procedure reproduce reasonably well the errors
seen in the CLEO data and cleog Monte Carlo. For example, the mass distribution from the

0D K − +→ π  decay is about 20% narrower than in cleog. I have not made a systematic study
comparing my Monte Carlo resolutions to those of cleog.

Monte Carlo fitting procedure

I generated approximately 10M events of the form 0D K − +→ π , with no other particles in
the event. The steps I use to determine the lifetime are outlined below:

(1) Generate the 0D  according to a Peterson function with ε = 0.078;

(2) Propagate the 0D  by a distance generated from its proper lifetime (124.4 µm) and
momentum;

(3) Decay the 0D  into its daughters;

(4) Trace each daughter through the detector and fit it using the procedure described
previously;

(5) Build the measured 0D  using the KWFIT  routine kvir_vertex_unknown;

(6) Fit for the lifetime of the 0D using kvtx_beam_lifetime, where the starting point is the
center of beam and the uncertainty is specified by the beam width;

(7) Fit for the lifetime of the 0D using kvtx_fixed_lifetime, where the starting point is the

true 0D production point.

To assess the quality of the fit, I first plotted the probability of the fit for both the fixed point and
beam point method. These plots are shown below:

plotted the quantities meas truec c∆ = τ − τ , ( )meas true/ / cc c τ∆ σ = τ − τ σ  and cτσ  as function of

several variables.
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