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Transporting Track Parameters and Covariance Matrices in
Magnetic Fields

I Statement of the problem
We want to be able to move a particle in a magnetic field to a particular location, e.g., to a

cylinder, a cone, a plane, or the position of closest approach (PCA) to a line or a point. Both the
track parameters and covariance matrix must be updated. I will show in this note how this can be
done for arbitrarily oriented magnetic fields and surfaces. When possible, I will also give the
exact formulas for a solenoidal field when the surfaces are aligned along certain directions (e.g.,
cylinder axis along the z axis or plane with normal in the x-y plane).1

II General algorithm for transporting track parameters

II.1 Representation of helix

Since a closed form answer is only possible in a fraction of interesting cases, we must
construct an algorithm that iteratively approaches the correct answer as quickly as possible. First,
however, we need to write down the equations of motion of a charged particle in a magnetic
field. It is most convenient, as I described in a previous fitting note [1], to use the so-called W

representation, αW = p p p E x y zx y z, , , , , ,d i , i.e., a 4-momentum and a point on the helix at

which the 4-momentum is evaluated. This representation is most natural for expressing
kinematic constraints, and the equations of motion are easily expressed using it.

Let x0 0 0 0= x y z, ,b g  be a known point on the helix and p0 0 0 0= p p px y z, ,d i  be its 3-

momentum there. For a solenoidal field, the case most often encountered in e e+ −  colliding beam
experiments, the updated momentum and position values can be written

                                                
1 This document can be found on the web at www.phys.ufl.edu/~avery/fitting.html
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where a Bq= −0 299792458. , B is the magnetic field strength in Tesla, q is the charge and
ρ = a p/ . These equations are functions of s, the arc length measured from the initial point x0 to
x = x y z, ,a f.

The exact equations describing the new helix parameters in an arbitrarily oriented, constant
magnetic field can easily be generalized to [1]
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where h is a unit vector in the direction of the magnetic field. Over a sufficiently small region
the equations can be accurately represented to second order in s
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II.2 Definition and use of the indicial equation in this paper

The strategy for computing the desired location on the helix, which can be either an
intersection point with a surface or a point of closest approach, is simple. The track has 3-

momentum p0 0 0 0= p p px y z, ,d i  at the position x0 0 0 0= x y z, ,b g . We substitute eqns. (2) for x

and p into the equations which describe the place we want to move to (these are at most second
order in the position coordinate) and then truncate the resulting expressions to second order in
the arc length s, yielding the so-called indicial equation
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as bs c2 0+ + = (4)

Solving this equation for s gives two solutions, so we choose the smallest positive value of s,
representing the solution closest to the current point in the direction of motion. Once we have the
approximate value of s, we use the exact transport equations in eqn. (2) to move the parameters
closer to the correct point. This process is repeated until the distance moved falls below a cutoff
value. This quadratic interpolation procedure converges extremely rapidly.

III Specific cases for transporting track parameters
For each specific case in this section, I provide the equation that describes the place to which

we want to move the track. Substituting eqns. (3) into this equation yields the indicial equation
as bs c2 0+ + =  which can be solved for s. Once s is obtained the track parameters are updated
using the exact formulae in eqn. (2) and the process repeated until s becomes small enough. Note
that when the track is a straight line (ρ = 0 ), the indicial equation is exact. This is because the

track becomes a linear function of s and the equations defining the surfaces or point of closest
approach are at most second order in the coordinates.

III.1 Intersection with a plane

The equation of a plane is x x− ⋅ =pd i ηηηη 0, where x p  is a point on the plane and ηηηη is a unit

vector in the direction of the normal to the plane. The general indicial equation is
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where ∆∆∆∆ = −x x0 p.

It is also worthwhile to work out two cases that can be solved for s exactly. When h is
perpendicular to ηηηη (e.g., barrel silicon plane in a solenoidal magnetic field), the exact indicial
equation is
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p p h

⊥ ⋅ + ⋅ − ⋅ × − =ηηηη ∆∆∆∆ ηηηη
ηηηη ηηηηd i a f0 0 1 0

a
s

a
sρ ρ (6)

which can be solved exactly for s:
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where R p a p a= + −⊥η η η η
2 2 22 ∆ ∆ , ∆η = ⋅∆∆∆∆ ηηηη , pη = ⋅p0 ηηηη  and p⊥ = ⋅ ×η ηηηη p h0 . The first term

on the RHS should be used when the closest intersection point is to be found or if a is close to
zero.

The other case is when h is parallel to ηηηη (e.g., plane at a fixed z position in a solenoidal
magnetic field. The exact indicial equation is

||h
p

ηηηη ∆∆∆∆ ηηηη
ηηηηd i ⋅ + ⋅ =0 0

p
s (8)

which can be solved for s trivially.

III.2 Intersection with a cylinder

The equation of a cylinder surface is x x− × =p Rd i ηηηη
2 2, where x p  is the center of the

cylinder (actually any point on the axis), R is the radius and ηηηη is a unit vector pointing in the
direction of the cylinder axis. The indicial equation is
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where ∆∆∆∆ = −x x0 p, ∆η = ⋅∆∆∆∆ ηηηη and pη = ⋅p0 ηηηη.

When the cylinder axis is aligned along the magnetic field h ⋅ =ηηηη 1d i , e.g., when the cylinder

axis is along z in a solenoidal field, it is possible to solve for s exactly. The exact indicial
equation is

sin

cos

h
p

p h

⋅ = − − +
⋅ −F

HG
I
KJ

+ − − ⋅ ×F
HG

I
KJ − =

ηηηη
∆∆∆∆

∆∆∆∆

1 2

2
1 1 0

2 2 2 0

2

2

2
0

d i

a f

∆ ∆
∆

η
η η

η

ρ
ρ

ρ
ρ ρ

R
p

p
s

p

p p
s

(10)

This has the solution
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where ∆ ∆ ∆R R= − −2 2 2
η , A p p p1

2 2
01= − − ⋅ ×η ρ/ /d i d ia f∆∆∆∆ p h  and A p p2 0= ⋅ −∆∆∆∆ p ∆η ηd i / .
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III.3 Intersection with a cone

The equation of a cone surface is x x x x− × = − ⋅p pd i d iηηηη ηηηη
2 2 2tan θ , where x p  is the apex

of the cone, θ is the half-opening angle and ηηηη is a unit vector pointing in the direction of the cone

axis. This equation can be rewritten in simpler form: x x x x− = − ⋅p pd i d i2 2 2ηηηη sec θ. The

indicial equation is
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where ∆∆∆∆ = −x x0 p, ∆η = ⋅∆∆∆∆ ηηηη and pη = ⋅p0 ηηηη. There is no case that can be solved exactly,

unless the helix is a straight line.

III.4 Point of closest approach to a reference point

The equation describing the location of a point on the track can be found by requiring that a
line starting at the reference point strike the helix at right angles to the direction of motion. This

gives the equation p x x⋅ − =pd i 0, where x p  represents the coordinates of the reference point.

The indicial equation is
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2
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where ∆∆∆∆ = −x x0 p, ∆h = ⋅∆∆∆∆ h  and ph = ⋅p h0 .

Unfortunately, the indicial equation for this case does not specify whether the track is at the
minimum or maximum point of closest approach. To go further we have to write the distance

from the helix to the point as a function of the arc length s. Let d 2  be the distance squared from

the reference point to a point on the helix. Then ∂ ∂d s2 0/ =  should reproduce the indicial
equation (to within a constant factor). To force the distance to be a minimum, we must in

addition require ∂ ∂2 2 2 0d s/ > . The best way to evaluate this is to move to the point of
minimum/maximum distance. At that point, s = 0 and the second derivative is proportional to the
coefficient multiplying the linear term in s in the indicial equation (13). Thus in addition to

solving the indicial equation, we must also require p − ⋅ × >ρ∆∆∆∆ p h0 0  at the point to ensure that

the point is at the distance of closest approach.2

When the helix is a straight line, the distance of closest approach to the point is

d pPCA ρ = = − ⋅0 2
0

2 2a f b g∆∆∆∆ ∆∆∆∆ p / (14)

                                                
2 Actually, the absolute sign of the linear term is not specified by this argument so one does not know a priori if we
get a minimum or a maximum distance. However, I worked out the case by hand to determine that the condition
shown here gives a minimum distance.
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III.5 Point of closest approach in the bend plane to a reference point

The equation describing the location of a point on the track can be found by requiring that a
line starting at the reference point strike the helix at right angles to the direction of motion in the

bend plane. This gives the equation p h x x h× ⋅ − × =d i d ip 0, where x p  represents the

coordinates of the reference point. The indicial equation is
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where ∆∆∆∆ = −x x0 p, ∆h = ⋅∆∆∆∆ h  and ph = ⋅p h0 .

Actually it is possible to find the exact solution for this case. Substituting the exact equations
of motion in eqn. (2) into the equation describing the PCA location, we get
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where A1 and A2  have the same meaning as defined previously for the cylinder case in eqn. (11),

i.e., A p p ph1
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This can be simplified after a fair amount of algebra to
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where p h⊥ = ×p h0 . This modified formulation of dPCA  has the advantage over the previous

one of being a signed quantity, which is useful when doing lifetime studies. The versions with
the square root in the denominator should be used when a is small.

When the helix is a straight line (a = 0), eqn. (19) reduces to
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III.6 Point of closest approach to a straight line

This case is important for transporting a track to the point closest to a drift chamber wire. Let
the wire coordinates be described by x xw w t= +0 ηηηη , where ηηηη is a unit vector along the wire and t

is the distance from a nominal starting point xw 0 . We want to find the location on the helix

where a line connecting it to a point on the wire is perpendicular to the wire and the direction of
motion of the track. The two perpendicularity conditions allow us to solve for t and s. After some
algebra, the indicial equation is found to be
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where ∆∆∆∆ = −x x0 0w , ∆η = ⋅∆∆∆∆ ηηηη, pη = ⋅p0 ηηηη and ηh = ⋅ηηηη h .

As in the problem of finding the point of closest approach to a point (Section III.4), the
indicial equation does not indicate whether the helix is at the minimum or maximum distance to
the line. As discussed in that section, the correct procedure is to move to the point satisfying the
indicial equation criterion in eqn. (21) and require that the linear coefficient in eqn. (21) be

positive there, i.e. p p p− − ⋅ × + ⋅ × >η ηρ ρ2
0 0 0/ ∆∆∆∆ ηηηηp h p h∆ .

When the helix is a straight line, the distance of closest approach can be found exactly as

d aPCA = =
− ⋅ ×
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0 0

0
a f b g∆∆∆∆ ηηηη

ηηηη
p

p
(22)

where I have allowed it to be signed. When the wire lies along the magnetic field direction (axial
drift chamber wire, for example), the problem is identical to finding the point of closest approach
in the bend plane to a point, discussed in Section III.5 (compare to eqn. (20)).

III.7 Intersection with a doughnut

Since we have not specified glazed, cinnamon or custard-filled, it is impossible to proceed
further.



8

IV Transporting the covariance matrix
We now consider the question of how transport the 7 × 7 covariance matrix, corresponding to

the seven quantities p p p E x y zx y z, , , , , ,d i. If the new parameters αααα are related to the original ones

αααα0  by the linear equation αααα αααα= A 0, where A is a 7 × 7 matrix, then the covariance matrix can

easily be found by propagation of errors to be

V AV Aα α= 0
T (23)

Of course, the equations that describe the relation of the new parameters to the old ones in
eqn. (2) are not linear, but they can easily be made so by expanding about αααα and αααα0  to first

order. The matrix A is the partial derivatives of the new parameters with respect to the old ones,
using eqn. (2). However, we must also include variations in the arc length s, which are different
for each of the cases considered in the previous section.

We compute the new covariance matrix, including the arc length variations, using a clever (if
I say so myself) 2-step procedure. First, we apply the results of the previous section to find the
arc length s between the old and new positions on the helix. The parameters are updated using
eqn. (2). The matrix A is found by taking partial derivatives in eqn. (2), e.g., Aij i j= ∂α∂α / 0 ,

and then used to find the first approximation to the new covariance matrix via eqn. (23),
assuming s is fixed.

Next, we expand the helix to first order in s about the updated position:
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′ =

′ = +

p p

x x
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E E

p
s
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Since s = 0, the variations can be written
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δ δ δ
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′ =

′ = +

p p

x x
p

E E

p
s
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where δs can be found from the indicial equation, i.e. b s cδ δ+ = 0, and thus expressed in terms
of variations of the original parameters, which were derived in Section III for each of the
separate cases. The variations can be written δ δ′ = ′αααα ααααA , thus the new covariance matrix is, in
analogy to eqn. (23), ′ = ′ ′V A V Aα α

T .
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