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Applied Fitting Theory VII

Building Virtual Particles

I Statement of the problem

In many physics analyses we encounter the problem of merging a set of particles into a single
particle so that this new “virtual” particle can be used directly in the analysis. For example, the
K parameters from the decy - ' 71~ are commonly used, but we also need decays such as
D* - K™ 't or even complete decay chains, e.g.

§O - D*+7T_
D't - Dot 1)
D° - Kt

where we want to (1) combir€ 7" to form aD?, (2) merge thed® with ar* to make aD™*

and (3) combine th® " with arr™ to make aB8°. The basic idea is that once a virtual particle

has been built, we can forget about the original particles that went into it. However, the
procedure for building the new particle is complicated by the fact that the original particles have
measured parameters with associated error (covariance) matrices. The merging process has to

take this information into account in such a way that the merged parameters and their error
matrix provide the best information possible about the reconstructed particle.

In this noté | will show how to calculate the track parameters and covariance matrix of a
particle by applying a vertex and possibly other constraints to a set of particles and then adding
together the 4—momenta of‘daughter” particles at the vertex point. The track parameters for

particlei are denoted by, , where
Pxi
pyi

Pzi
0 =(p‘)= E, 2)
i
Yi
z

! This document can be found on the web on my fitting pagevat phys.ufl.edu/~averyitting.html



i.e., a 4—momentum and a position at which the momentum is evaluated. The full sack$
is denoted by, e.g.,

a= 3)

Vao = (4)
Von
expressing the fact that the particles are initially independent. The track parameters for the virtual
particle are calledr, = (pvj.
Xv
1 Building a virtual particle with vertex constraints

Equations defining the virtual particle

The motion of a charged particle in an arbitrarily oriented, fixed magnetic field was described
in Appendix Il in ref. [1]. A particle starting out with momentyog at positionx will have a

momentunp at positionx given byp =pg +a(x —Xg) % h, wherea = -0.299792458Q, where

B is the magnetic field in Tesl is the charge of the particle ahds a unit vector in the
direction of magnetic field. The virtual particle parameters at the pc;#r(ixx, Xy xz) can then

be calculated by adding the contributions fronacks:
Pvx =D | Poix* 3 i~ %)~ i i~ %)]

p\/y:z:Fbiy‘l'axi(in_ %)= &l %i- ’i)]

sz:Z:pOiz'l'ayi()bi_xx)_ & %i~ >§/)] (5)
Ey = Z Boi
Xy = X

where, e.g.,a,; = —0.299792458, Q, Q is the charge on the particle aBg is thex

component of th® field.



Applying the vertex constraint

The following is a brief summary of the derivation in ref. [1]. We assume that the constraint
equations can be linearized by expanding about convenient pgjraadx , . Since the

covariance matrix of the vertex may be known in advance (sometimes known as a “prior”
covariance matrix), we write the overgf condition as

X% = (0 —0) V(e —ag)+(x =Xg) Vg =Xo) + 2AT(D & +E & +d) (6)
whereda =a —a 4 anddx = x — X 5. The terms represent, respectively, the contribution to the

)(2 from the tracks, the vertex and the constraiis.the vector of Lagrange multipliers, one
per constraint, while, andV,  are the initial vertex location and its covariance matrix. If the

vertex location is unknown one can set its covariance matrix to a large value.
There are two constraint equations for each track. For example, in a solenoidal field

a .

0= pyily: — BidX —%(Axi2+Ayiz)

(7)
Pzi . _

0=Az ——Zlsin 1[azi(pxiAxi + g/iAy)/ F%.]

Zi
whereAx; = x, — %, etc. A more complicated pair of equations can be derives fieids

oriented along other directions [1]. Whatever Bigeld orientation, thé&e andD matrices have
the simple form

E= D= . (8)

En Dn
where eaclE; is a 2x 3 matrix and eacl; is a 2x 7 matrix. Each row of these matrices
corresponds to a single constraint.

To cast thex? equation into a familiar form, we write it using the “extended” matrices

X Vxo E; D

-~ |ag Vou =~ _|E> D,

a= : ao = .. D = : .. (9)
a, Von En Dy,

giving the new equation
X?=(8-0,) Vz5(0 -d,)+2AT (D& +d) (10)

The minimization of thisy? with respect to all the variables has the solution [1]:



a=0ay-VeD'A
X =Xg=VyoE A
A=V5(Ddog+Edg+d)=Ao+VpE X an
Ao =Vp(Ddug +d)
V5 =(DVgeD' +vac,ET)_l
=Vp -VpEV,E Vp
with the matrixVp defined by
Vb1

1
Vp = Vpi = (DiVOiDiT) (12)

The x? is given by the simplex expression
X?=ATVEA =AT(VR +EVE T
(13)
=AT(Dé&ag +Edxy+d)
The covariance matrices are
-1
Vy = (Vg +VEeY
Vo =VaoVaP VPVaoWVaP VEVE VBV 40 (14)
cov(a ,X) ==V, D VpEV,

Solution for the virtual particle parameters

We are now ready to construct the virtual particle parameters and covariance matrix. The
parameters can be written in matrix form, following eqn. (5):

Py =Ad +Bx =% Aja; +BX

(15)
Xy =X
where
0 _zazi zayi
A=(A, A, . A) B=l 2% 0 )& (16)
( 1 2 n) _zayi zaXI 0
0 0 0
and



0 0 a, -a,
0 —ay; 0 Ay
0 a,; -a; O
001 O 0 0

o +» O
= O O

(17)

This part is easy since the track parameters are determined from the vertex constraint above. The
harder part is getting the covariance matrix right. It can be written as

v, - Vo, coMpy Xy) 18
ay ~ Vi ( )
co\(xy Py) Xy
From the definition of the virtual particle parameters in eqn. (15)
Vpy =AV,A T +A coMax B T +B cow ap T4BV B T
cov(py Xy) = A cofa x)+BV, (19)
Vy, = Vx
Using the matrices in eqn. (14), we find the covariance matrix for the virtual particle
v. |2 (AVoA ~S1VpSE)+TV,TT TV, (20)
v -V, TT V,

whereS;; = AVg D', S5 = AVgD'VpE andT=-B+Y Sy

The construction of the virtual particle, including track parameters and covariance matrix, is
now complete. The particle can be used freely in subsequent fits with the understanding that
when it is used in a fit, its daughters’ track parameters will not be updated. To make it possible to
update the daughter tracks when the virtual particle participates in a later fit, one would first have
to use egns. (11) and (14) to recalculate the daughter parameters and their covariance matrices,
including the correlations between tracks introduced by the vertex constraint. This is not possible
in theKWFIT package, which does not keep track of inter-track correlations.

Il Building virtual particles when a subset of particles is verticized

Building virtual particles is more complicated than discussed above because we want the
flexibility of merging different kinds of particles, some of which have poor or no position
information and so cannot be easily used in a vertex constraint. | divide the particles into three
classes:

1. Particles which are used to determine the vertex.

2. Particles which are forced to pass through the vertex determined by the first class, but

which are not used to find the vertex. One might use soft pions Bom- D" in this
way.



3. Particles which have no position information at all (such®sand photons) which only
contribute to the total 4-momentum.

It is necessary to re-derive the equations from the beginning to account for these changes. The

overall x? condition for the vertex is, as before,
X2 = (0 —0tg) Vas(a —0g) +(X =Xo) Vi =Xo)+ 2\ T (D30 +E & +d) (21)

where this time only class 1 and class 2 particles are included. Care must be taken when taking
partial derivatives, however. Classes 1 and 2 will both be used éidlwe partials, since both

sets of particles must pass though the vertex, but only class 1 particles will particgyat® in
because they alone determine the vertex. Taking partials with resgeataadA in this manner

to minimize the)(2 yields the following system of equations
Vio(Xx =Xo)+E'TA =0
Vas(a—ag)+D'A =0 (22)
Déa +Edx+d=0

whereE; = E; for class 1 particles ariek = 0 for all others. Solving for the unknowasandx
yields

a=ag-VPA
X =Xo—VyE'TA

Vs =(DVePT +Ede£'T)'1

-1
=Vp -VpE(Vg+VE) E'Vp

whereVg! =E'TVE =E'TVE". This final equality follows from the definition & . Also
note thatV5 is no longer symmetrj@ fact which greatly complicates the matrix algebra.

After an absolutely incredible amount of matrix manipulation, the covariance matrices can be
shown to reduce to the following forms

V, =(Vid+vel)
Va =Vao VaP VPVa oV B VEVE VBV o (24)
cov(a ,X) = =V, oD TVEV,
which can be seen by inspection todenticalto those derived in the previous section, with the

-1
exception that, is computed only from the class 1 trackg: = (Vx_é +V,§.1)



The calculation of the virtual particle’s parameters and covariance matrix must include tracks
from all classes, including those from class 3, which were not used in the vertex calculation
above. We define the virtual particle parameters as before

py =Aa +Bx = ziAiai +BX

(25)
XV =X
where the sums now run owadt particles andh andB are defined as before to be
0 _Z azi Z ayi
a,; 0 =Y i
A:(Al A, - An) B = Z zl Z Xl (26)
=Yay ) A 0
0 0 0
with
1000 0 a; -ay
0 1 0 0 -ay 0 ay
Ai = (27)
0 01 0 a, -&; 0
0001 O 0 0
The covariance matrix is, by definition,
V co X
cov(xy ,py) Vy,
where, as before,
Vov =AVA T +A coMax B T +B cok ap 4BV R T
cov(py Xy) = A cofa x)+BV, (29)

Vy, =V
Using (24) and collecting terms with the understandingihat 0 and Vp; =0 for class 3
particles, we find the covariance matrix for the virtual particle:

Vv :(zi(AiVOiAiT ~SyVpiSE )+ TV,T ' ‘TVx]
Ay

2 (30)
-V, T Vy
whereS;; = AVgD', S5 = A VgD VpiE; andT =-B + Y S . This is the identical result as

before, provided we use the proper values for the matrices. This algorithm is implemented in
KWFIT .

IV Building virtual particles incorporating additional constraints

Frequently we want to build virtual particles with the vertex constraint augmented by, say, a
mass constraint. The incorporation of additional constraints is not difficult at a fundamental



level. However, the equations derived in the last section do not work because the extra
constraints do not have the convenient block diagonal structure. Although one can include the
extra constraints simultaneously in the fit (see Appendix), it is far easier to adopt the two step
method described in Section V in ref. [1].

The strategy is to first build a virtual particle, using the standard vertex fit, and compute the
)(2. The additional constraints are then applied to the virtual particle itself, using one of the
constraints described in ref. [3]. The track parameters and covariance matrix are updated and a
new x? is computed, which is added to the first one to form the fofallf the additional
constraints are such that they apply to the virtual particle parameters as a whole, then this two
step procedure imathematically identicalb utilizing all the constraints in one simultaneous fit,
as proven in ref. [1].

Note, however, that the input tracks are not updated by the two step procedure. To update the
track parameters using the extra information, we would have to update the track covariance
matrices after the initial vertex constraint, a process that would introduce correlations between
the tracks. This is not particularly difficult to work out, but it does not seem necessary at this
time to keep track of the updated input tracks.



Appendix

Directly Incorporating Additional Constraints in Vertex Fitting

We frequently want to build a virtual particle where a mass constraint is imposed in addition
to the vertex conditions. | argued in Section IV that the best way to handle this case is to build
the virtual particle first with only the vertex constraint and add the additional constraint
afterwards. This method is identical to putting all the constraints together and turning the crank,
and offers the additional advantage of returning Molalues. However, for reasons of
mathematical completeness | decided to include here an algorithm for simultaneously (as
opposed to consecutively) adding additional constraints when building a virtual particle.

There is no fundamental problem in addm@dditional constraints to the vertex fitting
problem. The straightforward solution was worked out in ref. [2] using the ntatoxexpress
the constraints. Far tracks, we have a problem with 2 m total constraints, thus a
(2n+m)x(2n+ m) matrix must be inverted. However, | show here an alternative method which

is computationally faster and only involves the inversion of an additorah matrix.

Again we expand the constraint equations about convenient \mjuasdx 5. As in the
vertex only case, the constraint conditions are dendfedx) =0, whereH is a vector of length

m+2n, and the non-vertex constraints are assumed to come first.
The )(2 condition including all the constraints can be written in the standard linearized form:
X2 =(a-ag) Vah(a —0g)+ (X =X o) Vb —Xo) +2AT (G da +F& +g) (31)
whereda =a —a ,, X =X —X,. F andG are matrices representing the partial derivatives of
with respect to the vertex and track parameters, respectively, gehité{a 5, X ») is a column
vector representing the values of the constraints at the expansion point. These matrices can be
written

I\Ix Nal Naz Nan
El Dl

F= E2 G: D2 (32)
En Dn

TheD andE matrices are the partials f (the vertex constraint portion) with respect to the

track and vertex parameters, respectively, as described in SectionN.rmagices are the
partial derivatives oH for the non-vertex constraints. Note that | includeNgrterm, allowing

the extra constraints to depend on the vertex position. The dimensions of these matrices are
tabulated below.

E 2%x3
D, 2x7



Ny mx 3
Ny mx 7
g (m+2n) x1
F (m+2n)x3
G (m+2n) x 7n

Again we proceed by defining extended matrices to incorporate vertex and track information,
e.g.,

N N N -« N
X al a2 an
X Vyo
E D
vV 1 1
~ aq _ 01 ~
a= Vao = G=|E; D> (33)
a V
n On En Dn

The new x? equation can be written in these external variables as
~ o~ T .1, ~ ~ ~
X% =(a-ag) V&%,(a—ao)+2)\T(G6a +g) (34)
Minimizing this with respect ta andA yields the solution [1]:
& = ao _VaoéTA
A =V(Gad, +d)
~ o~y
_ T
Vs = (GVEOG ) (35)
_ ST S
Va =Vao Vaf VEVao
x> =ATVZ" = AT(ééao +g)

Implementing this solution requires that we invert a matrix of siae-(®) x (2n + m). For 3
tracks with a mass constraint, the matrix 7, which is starting to get a bit large. However, it
is possible to simplify the problem. We compiMg to be

T T T T T T
NxonNx+ziNaiVOiNai Ny 1NV ol 1 - NV BNV P g
T T T,y -1 T
v. =| E1VxoNx*DVolNay EV«EF 1*Vp1 - EVx&En
G . . . :
EnVeoND +DVoNT EV,E] E NV En+V 5L (36)
nVYx0'N 0 nVoNan WVx& 1 WV x En Dn
~ -1
_[NVgoNT NVgP'
[ DV;NT s
whereVp} =D;VoD" are 2x 2 matrices ant =(N,  Ng3 Ngo - Ngp).

10



Step aside and watch me work. To compyge | use a matrix inversion technique derived in

the Appendix in ref. [2]. Consider a large mawixvhich is split into a % 2 block. Then it is
easy to prove that

v-ls (Vll Vlzj_l _ ( st -gt Y, \{21 ) (37)

=| 5 = B
Viz Vo VSt G+t oS M ¥

whereS= \{; - \{,\53 \, andV,, is invertible. You can verify this solution by multiplying the

matrices together. The trick is to make the dimensiong 0&s small as possible while keeping
V,, invertible.

The lower block ofV is just Vél, which we inverted in egn. (11), so we only need to
calculate an additionah x m matrix inversion. This yields, using the above theorem,
% -V NV- DV -
Vé = - T < ('XR/OD P ny, (38)
_V6DV60N VN V 5 +\V IjDV d“d)\l |\!|\|V d*P )
whereVi' =NV NT -NVg PV PV 3N T is the newn x m matrix.

Equations (34) and (37) constitute the solution to the vertex problem plus additional
constraints. It requires only omex m matrix inverse in addition to what is required for the

vertex constraints. However, the calculation of the covariance matrix for the new patrticle (see
eqgns. 17 and 18) is much more complicated than before, mostly batausenot be expressed

in a simple way. For now, | see no way of easily computing the covariance matrix, even if the
form of N is simplified (say by containing no vertex component). For this reason | vastly prefer
using the two step approach outlined in Section IV.
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