New Capabilities in KWFIT

Paul Avery Dept. of Physics University of Florida

Sept. 17, 1999

http://www.phys.ufl.edu/~avery/kwfit/

1

Acknowledgment

Thanks to all the people who have found bugs and made suggestions for how to improve KWFIT. It would be impossible for me alone to explore the full phase space of possible situations.

Definition

Kinematic fitting is a mathematical procedure in which one uses the physical laws governing a particle interaction or decay to improve the measurements describing the process.

Example:

$$D^{0} \to K_{s} \boldsymbol{p}^{+} \boldsymbol{p}^{-}$$
$$K_{s} \to \boldsymbol{p}^{+} \boldsymbol{p}^{-}$$

Hypothesis is that decay happens at the beam spot

Constraints:

- 1. p^+p^- vertex for $K_s (2*2-3=1)$
- 2. *K*_s mass (1)
- 3. $D^0 \rightarrow K_s \boldsymbol{p}^+ \boldsymbol{p}^-$ vertex (3*2 = 6)

So a total of 1 + 1 + 6 = 8 degrees of freedom

Overview of Capabilities

Independent of CLEO

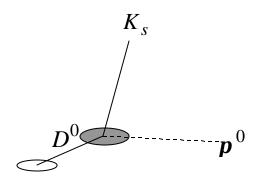
- Dependence only in track filling routines
- Allows one to interface it to fast MC routines

Single track list

- Charged particles, γ , π^0 , K_s , Λ
- "Virtual" particles, e.g. D^0 , B, anything you define
- Tracks have 7 indep. quantities and 7×7 cov. matrix p_x , p_x , p_x , E, x, y, z

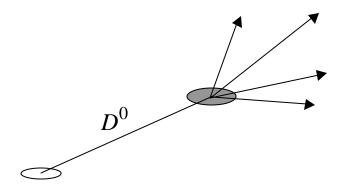
Non-vertex constraints

Mass	((1)
	Mass	Mass	Mass (1


- Energy (1)
- Total momentum (1)
- 3-mom (3)
- 4-mom (4)
- Back-to-back (for $\boldsymbol{m}^+ \boldsymbol{m}^-$) (5)

Vertex constraints

• Unknown 3-D	(2*N-3)
• Known 3-D (initial cov. matrix)	(2*N)
• Fixed 3-D	(2*N)
• Beam spot (calls "known" case)	(2*N)
• Unknown 2-D	(2*N-3)
• Known 2-D (initial cov. matrix)	(2*N)
• Fixed 2-D	(2*N)
• "Double vertex"	(2*N-3)


Double vertex case is useful to find decay vertex for decays of type

$$D^{0} \to K_{s} \boldsymbol{p}^{0}$$
$$K_{s} \to \boldsymbol{p}^{+} \boldsymbol{p}^{-}$$
$$\boldsymbol{p}^{0} \to \boldsymbol{g} \boldsymbol{g}$$

Lifetime fitting **D** NEW!

- Fit for ct directly \Rightarrow no multi-step procedure
- Correct accounting of all errors
- Uses all the information about the track, not just *y*
- You can smear *x*, *z* errors to reproduce "*y* only" method
- Keeps track of correlations of *ct* with other parameters

- kvtx_known_lifetime
- kvtx_beam_lifetime
- kvtx_fixed_lifetime
- kvtx_two_vertex_life

Building virtual particles

- Idea: apply vertex constraint to a set of particles to build a new particle with the correct 4-momentum at the fitted position. Full 7×7 covariance matrix computed.
- Compute track behaves like any other track, i.e., it can be moved, used in fits, etc.

Several ways of building virtual particles

- Unknown vertex
- Known vertex (covariance matrix)
- Beam vertex (calls "known vertex" case)
- Fixed vertex

Track quantities

• You can get info on almost any track quantity

kget_track_param kget_track_covar kget_track_mass kget_track_energy kget_track_energy kget_track_momentum kget_track_p4 kget_track_pperp kget_track_phi kget_track_phi kget_track_theta kget_track_dca_bend

Errors of track quantities

- You can get error of almost any track quantity in KWFIT
- Quick understanding of error behavior Plot errors without fitting lots of distributions

kget_track_err_mass kget_track_err_energy kget_track_err_momentum kget_track_err_pperp kget_track_err_phi kget_track_err_theta kget_track_err_dca_bend

Working on CLEO 3 version

Replace energy by mass in internal representation **Þ** wait for CLEO 3

- Energy is too correlated with other momentum variables
- Mass shifts when constraints applied after mass constraint
- No fundamental problems