Fokker-Planck Equation

Avinash Rustagi*

(Dated: September 16, 2018)

Fokker-Planck equation is a widely used equation that describes the time evolution of the probability of a distribution of Brownian particles that is subject to random forces. Such an equation can be derived in two steps:

1) Equation of motion for the probability density $\rho(x, v, t)$ to find the Brownian particle in an interval $(x, x+d x)$ and $(v, v+d v)$ at time t for one realization of the random force $\xi(t)$.
2) Average over many realizations of the random force to obtain the macroscopically observed probability density $P(x, v, t)=\langle\rho(x, v, t)\rangle_{\xi}$.

Consider the phase space (x, v) and the probability to find the particle in an interval $(x, x+d x)$ and $(v, v+d v)$ at time t is given $\rho(x, v, t) d x d v$. Since the total number of particles is conserved over the entire phase space

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d v \rho(x, v, t)=1 \tag{1}
\end{equation*}
$$

Now if we consider the rate of change of particles in volume V_{0} of the phase space that has a surface S, this rate of change is equal to the outflow of particles through the surface S_{0}. Thus by continuity

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{V_{0}} d V \rho(x, v, t)=-\int_{S_{0}} d \vec{S} \cdot \dot{\vec{x}} \rho(x, v, t) \tag{2}
\end{equation*}
$$

where $\dot{\vec{x}}=(\dot{x}, \dot{v})$ is the velocity in phase space [dot represents the time derivative]. This is simply the "Continuity Equation" in phase space. By Gauss' Theorem

$$
\begin{equation*}
\int_{S_{0}} d \vec{S} \cdot \dot{\vec{x}} \rho(x, v, t)=\int_{V_{0}} d V \vec{\nabla} \cdot[\dot{\vec{x}} \rho(x, v, t)] \tag{3}
\end{equation*}
$$

where $\vec{\nabla}=\left(\partial_{x}, \partial_{v}\right)$. Therefore

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho(x, v, t)=-\frac{\partial}{\partial x}[\dot{x} \rho(x, v, t)]-\frac{\partial}{\partial v}[\dot{v} \rho(x, v, t)] \tag{4}
\end{equation*}
$$

since we can arbitrarily choose the volume V_{0} in the phase space.
For Brownian motion of a particle in a potential $V(x)$ providing force $F(x)=-\partial_{x} V(x)$,

$$
\begin{align*}
& \frac{d x}{d t}=v \\
& \frac{d v}{d t}=-\gamma \frac{v}{m}+\frac{F(x)}{m}+\frac{\xi(t)}{m} \tag{5}
\end{align*}
$$

therefore

$$
\begin{align*}
\frac{\partial}{\partial t} \rho(x, v, t) & =-\frac{\partial}{\partial x}[\dot{x} \rho(x, v, t)]-\frac{\partial}{\partial v}[\dot{v} \rho(x, v, t)] \\
& =-\frac{\partial}{\partial x}[v \rho(x, v, t)]+\frac{\partial}{\partial v}\left[\gamma \frac{v}{m} \rho(x, v, t)\right]-\frac{\partial}{\partial v}\left[\frac{F(x)}{m} \rho(x, v, t)\right]-\frac{\partial}{\partial v}\left[\frac{\xi(t)}{m} \rho(x, v, t)\right] \tag{6}\\
& =-L_{0} \rho(x, v, t)-L_{1} \rho(x, v, t)
\end{align*}
$$

where the operators L_{0} and L_{1} are

$$
\begin{align*}
& L_{0}=v \frac{\partial}{\partial x}-\frac{\gamma}{m}-\frac{\gamma}{m} v \frac{\partial}{\partial v}+\frac{F(x)}{m} \frac{\partial}{\partial v} \\
& L_{1}=\frac{\xi(t)}{m} \frac{\partial}{\partial v} \tag{7}
\end{align*}
$$

To get to the observable probability density, we need to average over the various realizations of the random force $\xi(t)$

$$
\begin{equation*}
P(x, v, t)=\langle\rho(x, v, t)\rangle_{\xi} \tag{8}
\end{equation*}
$$

To evaluate this average, define

$$
\begin{equation*}
\rho(x, v, t)=e^{-L_{0} t} \sigma(x, v, t) \tag{9}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{\partial}{\partial t} \sigma(x, v, t)=-e^{L_{0} t} L_{1} e^{-L_{0} t} \sigma(x, v, t) \equiv-V(t) \sigma(x, v, t) \tag{10}
\end{equation*}
$$

The formal solution to this equation is

$$
\begin{equation*}
\sigma(x, v, t)=\exp \left[-\int_{0}^{t} d t_{1} V\left(t_{1}\right)\right] \sigma(x, v, 0) \tag{11}
\end{equation*}
$$

Averaging over the random force realizations

$$
\begin{equation*}
\langle\sigma(x, v, t)\rangle_{\xi}=\left\langle\exp \left[-\int_{0}^{t} d t_{1} V\left(t_{1}\right)\right]\right\rangle_{\xi} \sigma(x, v, 0) \tag{12}
\end{equation*}
$$

which upon using the cumulant expansion relation

$$
\begin{equation*}
\left\langle e^{-i \Phi(t)}\right\rangle=\exp \left[\sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!} c_{n}\right] \tag{13}
\end{equation*}
$$

gives (assuming that the random force is Gaussian implying that only second cumulant is non-zero equivalent to stating that only even moments are non-zero)

$$
\begin{equation*}
\langle\sigma(x, v, t)\rangle_{\xi}=\exp \left[\frac{1}{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}\left\langle V\left(t_{1}\right) V\left(t_{2}\right)\right\rangle_{\xi}\right] \sigma(x, v, 0) \tag{14}
\end{equation*}
$$

Thus we evaluate the average in the exponential

$$
\begin{align*}
\frac{1}{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}\left\langle V\left(t_{1}\right) V\left(t_{2}\right)\right\rangle_{\xi} & =\frac{1}{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}\left\langle e^{L_{0} t_{1}} \frac{\xi\left(t_{1}\right)}{m} \frac{\partial}{\partial v} e^{-L_{0} t_{1}} e^{L_{0} t_{2}} \frac{\xi\left(t_{2}\right)}{m} \frac{\partial}{\partial v} e^{-L_{0} t_{2}}\right\rangle_{\xi} \\
& =\frac{1}{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} \frac{\left\langle\xi\left(t_{1}\right) \xi\left(t_{2}\right)\right\rangle_{\xi}}{m^{2}} e^{L_{0} t_{1}} \frac{\partial}{\partial v} e^{-L_{0} t_{1}} e^{L_{0} t_{2}} \frac{\partial}{\partial v} e^{-L_{0} t_{2}} \tag{15}\\
& =\frac{1}{2} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2} \frac{g \delta\left(t_{1}-t_{2}\right)}{m^{2}} e^{L_{0} t_{1}} \frac{\partial}{\partial v} e^{-L_{0} t_{1}} e^{L_{0} t_{2}} \frac{\partial}{\partial v} e^{-L_{0} t_{2}} \\
& =\frac{1}{2} \int_{0}^{t} d t_{1} \frac{g}{m^{2}} e^{L_{0} t_{1}} \frac{\partial^{2}}{\partial v^{2}} e^{-L_{0} t_{1}}
\end{align*}
$$

where we have used the Gaussian nature of the random force i.e. $\left\langle\xi\left(t_{1}\right) \xi\left(t_{2}\right)\right\rangle_{\xi}=g \delta\left(t_{1}-t_{2}\right)$. Thus

$$
\begin{equation*}
\langle\sigma(x, v, t)\rangle_{\xi}=\exp \left[\frac{g}{2 m^{2}} \int_{0}^{t} d t_{1} e^{L_{0} t_{1}} \frac{\partial^{2}}{\partial v^{2}} e^{-L_{0} t_{1}}\right] \sigma(x, v, 0) \tag{16}
\end{equation*}
$$

Taking the time-derivative of the above equation

$$
\begin{equation*}
\frac{\partial}{\partial t}\langle\sigma(x, v, t)\rangle_{\xi}=\frac{g}{2 m^{2}} e^{L_{0} t} \frac{\partial^{2}}{\partial v^{2}} e^{-L_{0} t}\langle\sigma(x, v, t)\rangle_{\xi} \tag{17}
\end{equation*}
$$

which translates to

$$
\begin{equation*}
\frac{\partial}{\partial t}\langle\rho(x, v, t)\rangle_{\xi}=-L_{0}\langle\rho(x, v, t)\rangle_{\xi}+\frac{g}{2 m^{2}} \frac{\partial^{2}}{\partial v^{2}}\langle\rho(x, v, t)\rangle_{\xi} \tag{18}
\end{equation*}
$$

which is the Fokker-Planck equation in terms of the macroscopic probability density

$$
\begin{equation*}
\frac{\partial}{\partial t} P(x, v, t)=-v \frac{\partial}{\partial x} P(x, v, t)+\frac{\partial}{\partial v}\left[\left(\frac{\gamma}{m} v-\frac{F(x)}{m}\right) P(x, v, t)\right]+\frac{g}{2 m^{2}} \frac{\partial^{2}}{\partial v^{2}} P(x, v, t) \tag{19}
\end{equation*}
$$

In absence of an external force and in thermal equilibrium $\left(\partial_{t} P=0\right)$, the probability distribution is given by the Boltzmann factor

$$
\begin{equation*}
P_{0} \propto e^{-\beta m v^{2} / 2} \Rightarrow \partial_{v} P_{0}=-\beta m v P_{0} \tag{20}
\end{equation*}
$$

Hence

$$
\begin{align*}
& 0=\frac{\partial}{\partial v}\left[\frac{\gamma}{m} v P_{0}(v)\right]+\frac{g}{2 m^{2}} \frac{\partial^{2}}{\partial v^{2}} P_{0}(v) \\
& 0=\frac{\partial}{\partial v}\left[\frac{\gamma}{m} v P_{0}(v)\right]-\frac{g}{2 m^{2}} \frac{\partial}{\partial v} \beta m v P_{0} \tag{21}\\
& 0=\frac{\partial}{\partial v}\left[\left(\frac{\gamma}{m}-\frac{\beta g}{2 m}\right) v P_{0}(v)\right]
\end{align*}
$$

which implies

$$
\begin{equation*}
g=2 \gamma k_{B} T \tag{22}
\end{equation*}
$$

MATHEMATICAL RELATIONS

Moments and Characteristic Function

Probability distribution functions (PDF) are normalized:

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x P(x)=1 \tag{23}
\end{equation*}
$$

which implies that the Fourier component of PDF at $k=0$ is unity. The Fourier transform of the PDF can be defined as

$$
\begin{equation*}
P(k)=\int_{-\infty}^{\infty} d x e^{-i k x} P(x) \tag{24}
\end{equation*}
$$

and from the normalization condition $P(k=0)=1$. The function $P(k)$ is referred to as the "Characteristic Function". The moments of the PDF can be thereby expressed in terms of the derivatives of the Characteristic Function.

$$
\begin{align*}
& m_{1}=\langle x\rangle=\int_{-\infty}^{\infty} d x x P(x)=\left.i \frac{\partial P(k)}{\partial k}\right|_{k=0} \\
& m_{2}=\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} d x x^{2} P(x)=\left.i^{2} \frac{\partial^{2} P(k)}{\partial k^{2}}\right|_{k=0} \tag{25}\\
& \vdots \\
& m_{n}=\left\langle x^{n}\right\rangle=\int_{-\infty}^{\infty} d x x^{n} P(x)=\left.i^{n} \frac{\partial^{n} P(k)}{\partial k^{n}}\right|_{k=0}
\end{align*}
$$

Therefore

$$
\begin{equation*}
P(k)=\sum_{n=0}^{\infty} \frac{(-i k)^{n}}{n!} m_{n} \tag{26}
\end{equation*}
$$

Cumulants and Cumulant Generating Function

From the relation between the PDF and the characteristic function

$$
\begin{equation*}
P(x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x} P(k) \tag{27}
\end{equation*}
$$

a "Cumulant Generating Function" $\psi(k)$ is defined as

$$
\begin{equation*}
P(x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x} e^{\psi(k)} \tag{28}
\end{equation*}
$$

where $\psi(k)=\log [P(k)]$ is the function whose Taylor series coefficients at the origin $k=0$ are the "Cumulants".

$$
\begin{equation*}
c_{n}=\left.\frac{1}{i^{n}} \frac{\partial^{n} \psi(k)}{\partial k^{n}}\right|_{k=0} \tag{29}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\psi(k) & =-i k c_{1}-\frac{1}{2!} k^{2} c_{2} \ldots \\
& =\sum_{n=1}^{\infty} \frac{(-i k)^{n}}{n!} c_{n} \tag{30}
\end{align*}
$$

Comparing to the Characteristic function expansion in terms of moments

$$
\begin{equation*}
\psi(k)=\sum_{n=1}^{\infty} \frac{(-i k)^{n}}{n!} c_{n}=\log \left[\sum_{n=0}^{\infty} \frac{(-i k)^{n}}{n!} m_{n}\right] \tag{31}
\end{equation*}
$$

implies

- $c_{1}=m_{1}$ which is the "Mean"
- $c_{2}=m_{2}-m_{1}^{2}=\sigma^{2}$ which is the "Variance" [σ : Standard Deviation]
- $c_{3}=m_{3}-3 m_{1} m_{2}+2 m_{1}^{3}$ which is the "Skewness"
- $c_{4}=m_{4}-3 m_{2}^{2}-4 m_{1} m_{3}+12 m_{1}^{2} m_{2}-6 m_{1}^{4}$ which is the "Kurtosis"

Therefore

$$
\begin{equation*}
P(k)=\exp \left[\sum_{n=1}^{\infty} \frac{(-i k)^{n}}{n!} c_{n}\right]=\sum_{n=0}^{\infty} \frac{(-i k)^{n}}{n!} m_{n} \tag{32}
\end{equation*}
$$

which implies

$$
\begin{equation*}
P(k=1)=\exp \left[\sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!} c_{n}\right]=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} m_{n} \tag{33}
\end{equation*}
$$

Consider the following average

$$
\begin{align*}
\left\langle e^{-i \Phi(t)}\right\rangle & =\left\langle\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \Phi(t)^{n}\right\rangle \\
& =\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!}\left\langle\Phi(t)^{n}\right\rangle \tag{34}\\
& =\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} m_{n} \\
& =\exp \left[\sum_{n=1}^{\infty} \frac{(-i)^{n}}{n!} c_{n}\right]
\end{align*}
$$

