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Fokker-Planck equation is a widely used equation that describes the time evolution of the probability of a distribu-
tion of Brownian particles that is subject to random forces. Such an equation can be derived in two steps:

1) Equation of motion for the probability density ρ(x, v, t) to find the Brownian particle in an interval (x, x+ dx)
and (v, v + dv) at time t for one realization of the random force ξ(t).

2) Average over many realizations of the random force to obtain the macroscopically observed probability density
P (x, v, t) = 〈ρ(x, v, t)〉ξ.

Consider the phase space (x, v) and the probability to find the particle in an interval (x, x+ dx) and (v, v + dv) at
time t is given ρ(x, v, t)dxdv. Since the total number of particles is conserved over the entire phase space∫ ∞

−∞
dx

∫ ∞
−∞

dv ρ(x, v, t) = 1 (1)

Now if we consider the rate of change of particles in volume V0 of the phase space that has a surface S, this rate of
change is equal to the outflow of particles through the surface S0. Thus by continuity

∂

∂t

∫
V0

dV ρ(x, v, t) = −
∫
S0

d~S.~̇x ρ(x, v, t) (2)

where ~̇x = (ẋ, v̇) is the velocity in phase space [dot represents the time derivative]. This is simply the “Continuity
Equation” in phase space. By Gauss’ Theorem∫

S0

d~S.~̇x ρ(x, v, t) =

∫
V0

dV ~∇ · [~̇x ρ(x, v, t)] (3)

where ~∇ = (∂x, ∂v). Therefore

∂

∂t
ρ(x, v, t) = − ∂

∂x
[ẋρ(x, v, t)]− ∂

∂v
[v̇ρ(x, v, t)] (4)

since we can arbitrarily choose the volume V0 in the phase space.

For Brownian motion of a particle in a potential V (x) providing force F (x) = −∂xV (x),

dx

dt
= v

dv

dt
= −γ v

m
+
F (x)

m
+
ξ(t)

m

(5)

therefore

∂

∂t
ρ(x, v, t) = − ∂

∂x
[ẋρ(x, v, t)]− ∂

∂v
[v̇ρ(x, v, t)]

= − ∂

∂x
[vρ(x, v, t)] +

∂

∂v

[
γ
v

m
ρ(x, v, t)

]
− ∂

∂v

[
F (x)

m
ρ(x, v, t)

]
− ∂

∂v

[
ξ(t)

m
ρ(x, v, t)

]
= −L0ρ(x, v, t)− L1ρ(x, v, t)

(6)

where the operators L0 and L1 are

L0 = v
∂

∂x
− γ

m
− γ

m
v
∂

∂v
+
F (x)

m

∂

∂v

L1 =
ξ(t)

m

∂

∂v

(7)
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To get to the observable probability density, we need to average over the various realizations of the random force ξ(t)

P (x, v, t) = 〈ρ(x, v, t)〉ξ (8)

To evaluate this average, define

ρ(x, v, t) = e−L0tσ(x, v, t) (9)

which implies

∂

∂t
σ(x, v, t) = −eL0tL1e

−L0tσ(x, v, t) ≡ −V (t)σ(x, v, t) (10)

The formal solution to this equation is

σ(x, v, t) = exp

[
−
∫ t

0

dt1 V (t1)

]
σ(x, v, 0) (11)

Averaging over the random force realizations

〈σ(x, v, t)〉ξ = 〈exp

[
−
∫ t

0

dt1 V (t1)

]
〉ξσ(x, v, 0) (12)

which upon using the cumulant expansion relation

〈e−iΦ(t)〉 = exp

[ ∞∑
n=1

(−i)n

n!
cn

]
(13)

gives (assuming that the random force is Gaussian implying that only second cumulant is non-zero equivalent to
stating that only even moments are non-zero)

〈σ(x, v, t)〉ξ = exp

[
1

2

∫ t

0

dt1

∫ t

0

dt2 〈V (t1)V (t2)〉ξ
]
σ(x, v, 0) (14)

Thus we evaluate the average in the exponential

1

2

∫ t

0

dt1

∫ t

0

dt2 〈V (t1)V (t2)〉ξ =
1

2

∫ t

0

dt1

∫ t

0

dt2 〈eL0t1
ξ(t1)

m

∂

∂v
e−L0t1eL0t2

ξ(t2)

m

∂

∂v
e−L0t2〉ξ

=
1

2

∫ t

0

dt1

∫ t

0

dt2
〈ξ(t1)ξ(t2)〉ξ

m2
eL0t1

∂

∂v
e−L0t1eL0t2

∂

∂v
e−L0t2

=
1

2

∫ t

0

dt1

∫ t

0

dt2
gδ(t1 − t2)

m2
eL0t1

∂

∂v
e−L0t1eL0t2

∂

∂v
e−L0t2

=
1

2

∫ t

0

dt1
g

m2
eL0t1

∂2

∂v2
e−L0t1

(15)

where we have used the Gaussian nature of the random force i.e. 〈ξ(t1)ξ(t2)〉ξ = gδ(t1 − t2). Thus

〈σ(x, v, t)〉ξ = exp

[
g

2m2

∫ t

0

dt1 e
L0t1

∂2

∂v2
e−L0t1

]
σ(x, v, 0) (16)

Taking the time-derivative of the above equation

∂

∂t
〈σ(x, v, t)〉ξ =

g

2m2
eL0t

∂2

∂v2
e−L0t〈σ(x, v, t)〉ξ (17)

which translates to

∂

∂t
〈ρ(x, v, t)〉ξ = −L0〈ρ(x, v, t)〉ξ +

g

2m2

∂2

∂v2
〈ρ(x, v, t)〉ξ (18)
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which is the Fokker-Planck equation in terms of the macroscopic probability density

∂

∂t
P (x, v, t) = −v ∂

∂x
P (x, v, t) +

∂

∂v

[(
γ

m
v − F (x)

m

)
P (x, v, t)

]
+

g

2m2

∂2

∂v2
P (x, v, t) (19)

In absence of an external force and in thermal equilibrium (∂tP = 0), the probability distribution is given by the
Boltzmann factor

P0 ∝ e−βmv
2/2 ⇒ ∂vP0 = −βmvP0 (20)

Hence

0 =
∂

∂v

[ γ
m
vP0(v)

]
+

g

2m2

∂2

∂v2
P0(v)

0 =
∂

∂v

[ γ
m
vP0(v)

]
− g

2m2

∂

∂v
βmvP0

0 =
∂

∂v

[(
γ

m
− βg

2m

)
vP0(v)

] (21)

which implies

g = 2γkBT (22)

MATHEMATICAL RELATIONS

Moments and Characteristic Function

Probability distribution functions (PDF) are normalized:∫ ∞
−∞

dxP (x) = 1 (23)

which implies that the Fourier component of PDF at k = 0 is unity. The Fourier transform of the PDF can be defined
as

P (k) =

∫ ∞
−∞

dx e−ikx P (x) (24)

and from the normalization condition P (k = 0) = 1. The function P (k) is referred to as the “Characteristic Function”.
The moments of the PDF can be thereby expressed in terms of the derivatives of the Characteristic Function.

m1 = 〈x〉 =

∫ ∞
−∞

dxxP (x) = i
∂P (k)

∂k

∣∣∣∣
k=0

m2 = 〈x2〉 =

∫ ∞
−∞

dxx2 P (x) = i2
∂2P (k)

∂k2

∣∣∣∣
k=0

...

mn = 〈xn〉 =

∫ ∞
−∞

dxxn P (x) = in
∂nP (k)

∂kn

∣∣∣∣
k=0

(25)

Therefore

P (k) =

∞∑
n=0

(−ik)n

n!
mn (26)
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Cumulants and Cumulant Generating Function

From the relation between the PDF and the characteristic function

P (x) =

∫ ∞
−∞

dk

2π
eikx P (k) (27)

a “Cumulant Generating Function” ψ(k) is defined as

P (x) =

∫ ∞
−∞

dk

2π
eikx eψ(k) (28)

where ψ(k) = Log[P (k)] is the function whose Taylor series coefficients at the origin k = 0 are the “Cumulants”.

cn =
1

in
∂nψ(k)

∂kn

∣∣∣∣
k=0

(29)

Therefore

ψ(k) = −ikc1 −
1

2!
k2c2....

=

∞∑
n=1

(−ik)n

n!
cn

(30)

Comparing to the Characteristic function expansion in terms of moments

ψ(k) =

∞∑
n=1

(−ik)n

n!
cn = Log

[ ∞∑
n=0

(−ik)n

n!
mn

]
(31)

implies

• c1 = m1 which is the “Mean”

• c2 = m2 −m2
1 = σ2 which is the “Variance” [σ: Standard Deviation]

• c3 = m3 − 3m1m2 + 2m3
1 which is the “Skewness”

• c4 = m4 − 3m2
2 − 4m1m3 + 12m2

1m2 − 6m4
1 which is the “Kurtosis”

Therefore

P (k) = exp

[ ∞∑
n=1

(−ik)n

n!
cn

]
=

∞∑
n=0

(−ik)n

n!
mn (32)

which implies

P (k = 1) = exp

[ ∞∑
n=1

(−i)n

n!
cn

]
=
∞∑
n=0

(−i)n

n!
mn (33)

Consider the following average

〈e−iΦ(t)〉 = 〈
∞∑
n=0

(−i)n

n!
Φ(t)n〉

=

∞∑
n=0

(−i)n

n!
〈Φ(t)n〉

=

∞∑
n=0

(−i)n

n!
mn

= exp

[ ∞∑
n=1

(−i)n

n!
cn

]
(34)
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