BPS deformations of
 $$
A d S_{p} \times S^{q}
$$

Oleg Lunin

Institute for Advanced Study
H. Lin, O. L., J. Maldacena, hep-th/0409nnn

Outline

- $1 / 2$ BPS states in field theory \& Fermi liquid.
- Technique for constructing gravity solutions.
- Solutions in IIB SUGRA and Laplace equation.
- Solutions in 11D SUGRA and Toda equation.
- Summary.

Half-BPS states in $\mathcal{N}=4$ SYM

- $\mathcal{N}=4$ SYM on $S^{3} \times R$:
- chiral primaries:

$$
\operatorname{Tr}\left(Z^{n_{1}}\right) \ldots \operatorname{Tr}\left(Z^{n_{k}}\right), \quad Z=\phi_{1}+i \phi_{2}
$$

- symmery: $S^{3} \times S O(4)$
- Matrix model description: harmonic oscillator - set of harmonic oscillators: $\alpha_{n}^{\dagger}=\operatorname{Tr}\left[\left(a^{\dagger}\right)^{n}\right]$
- eigenvalue basis \& Fermi liquid

- Brane probe approximation
- giant gravitons expanding on S^{3} or \tilde{S}^{3}.

McGreevy, Susskind, Toumbas '00

- $A d S_{7} \times S^{4}:$ giant gravitons with $S^{5} \times S^{2}$.

Technique for constructing gravity solutions

- Assumptions
- bosonic symmetries: $S O(4) \times S O(4)$
- bosonic fields: mertic and $F^{(5)}$
- existence of Killing spinor:

$$
\nabla_{M} \eta+\frac{i}{480} \Gamma^{M_{1} M_{2} M_{3} M_{4} M_{5}} F_{M_{1} M_{2} M_{3} M_{4} M_{5}}^{(5)} \Gamma_{M} \eta=0
$$

- Reduction on $S^{3} \times S^{3}$: spinor in 4D interacting with gauge field and 2 scalars
- Using bilinears of Killing spinor

Gauntlett, Gutowski, Martelli, Pakis,

$$
\begin{array}{lr}
K_{\mu}=-\bar{\varepsilon} \gamma_{\mu} \varepsilon & K \cdot L=0, \quad L^{2}=-K^{2} \\
L_{\mu}=\bar{\varepsilon} \gamma^{5} \gamma_{\mu} \varepsilon &
\end{array}
$$

- L is an exact form, K^{μ} is a Killing vector

$$
d s^{2}=h^{2} d y^{2}-h^{-2}\left(d t+V_{i} d x^{i}\right)^{2}+\tilde{h}_{i j} d x^{i} d x^{j}
$$

1/2 BPS geometries in Type IIB SUGRA

- Explicit geometry and Laplace equation

$$
\begin{aligned}
d s^{2}= & -h^{-2}\left(d t+V_{i} d x^{i}\right)+h^{2}\left(d y^{2}+d x^{i} d x^{i}\right) \\
& +y e^{G} d \Omega_{3}^{2}+y e^{-G} d \tilde{\Omega}_{3}^{2} \\
F_{(5)}= & F_{\mu \nu} d x^{\mu} \wedge d x^{\nu} \wedge d \Omega_{3}+\tilde{F}_{\mu \nu} d x^{\mu} \wedge d x^{\nu} \wedge d \tilde{\Omega}_{3} \\
F= & d B_{t}(d t+V)+B_{t} d V+d \hat{B}
\end{aligned}
$$

- functions appearing in the solution:

$$
\begin{array}{ll}
h^{-2}=2 y \cosh G, & y d V=*_{3} d z \\
B_{t}=-\frac{1}{4} y^{2} e^{2 G}, & d \hat{B}=-\frac{1}{4} y^{3} *_{3} d\left(\frac{z+\frac{1}{2}}{y^{2}}\right) \\
\tilde{B}_{t}=-\frac{1}{4} y^{2} e^{-2 G} & d \hat{\tilde{B}}=-\frac{1}{4} y^{3} *_{3} d\left(\frac{z-\frac{1}{2}}{y^{2}}\right)
\end{array}
$$

- solution is paramaterized by one function z

$$
z=\frac{1}{2} \tanh (G), \quad \partial_{i} \partial_{i} z+y \partial_{y}\left(\frac{\partial_{y} z}{y}\right)=0
$$

- potential singularities: $R \tilde{R}=y=0$

Regular solutions: general description

- Laplace equation and boundary conditions
- 6D Laplace equation for $\Phi=\frac{z}{y^{2}}$
- regularity at $y=0: z= \pm \frac{1}{2}$

$$
h^{2} d y^{2}+y e^{-G} d \tilde{\Omega}_{3}^{2} \sim \frac{1}{c(x)}\left(d y^{2}+y^{2} d \tilde{\Omega}_{3}^{2}\right)
$$

- Boundary condition for a generic state

- Plane $y=0 \leftrightarrow$ phase space of the oscillator

Examples

- $A d S_{5} \times S^{5}$

- (Giant) gravitons

- PP wave and its excitations

$$
z=\frac{x_{2}}{2 \sqrt{x_{2}^{2}+y^{2}}}
$$

Topology and fluxes

- Two types of closed five-manifolds

- Different topologies: non-contractible spheres
- Quantization of fluxes:

$$
\tilde{N}=-\frac{1}{2 \pi^{2} l_{p}^{4}} \int d \hat{\tilde{B}}=\frac{(\text { Area })_{z=-\frac{1}{2}}}{4 \pi^{2} l_{p}^{4}}
$$

- Energy and higher moments

$$
\Delta=J=\int \frac{d^{2} x}{2 \pi \hbar} \frac{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)}{\hbar}-\frac{1}{2}\left(\int_{D} \frac{d^{2} x}{2 \pi \hbar}\right)^{2}
$$

$1 / 2$ BPS geometries in M theory

- Bosonic symmetries: $S O(6) \times S O(2)$

$$
\begin{aligned}
d s_{11}^{2} & =\frac{e^{2 \lambda}}{m^{2}} d \Omega_{5}^{2}+\frac{y^{2} e^{-4 \lambda}}{4 m^{2}} d \tilde{\Omega}_{2}^{2} \\
& \left.-\frac{e^{2 \lambda} h^{2}}{m^{2}} d t+V_{i} d x^{i}\right)^{2}+\frac{e^{-4 \lambda}}{4 m^{2} h^{2}}\left(d y^{2}+e^{D} d \mathbf{x}^{2}\right) \\
h & =1+y^{2} e^{-6 \lambda}, \quad e^{-6 \lambda}=\frac{\partial_{y} D}{y\left(1-y \partial_{y} D\right)}
\end{aligned}
$$

- Solution is parameterized by one function D which satisfies 3D Toda equation:

$$
\Delta D+\partial_{y}^{2} e^{D}=0
$$

- Boundary conditions at $y=0$
$\partial_{y} D=0, \quad R_{2} \rightarrow 0$
$D \sim \log y, \quad R_{5} \rightarrow 0$

- Boundary condition at infinity

Solutions of Toda equation

- $A d S_{7} \times S^{4}$

$$
e^{D}=\frac{r^{2} L^{-6}}{4+r^{2}}, \quad x=\left(1+\frac{r^{2}}{4}\right) \cos \theta, \quad 4 y=L^{-3} r^{2} \sin \theta
$$

- $A d S_{4} \times S^{7}$

$$
\begin{gathered}
e^{D}=4 L^{-6} \sqrt{1+\frac{r^{2}}{4}} \sin ^{2} \theta \\
x=\left(1+\frac{r^{2}}{4}\right)^{1 / 4} \cos \theta, \quad 2 y=L^{-3} r \sin ^{2} \theta
\end{gathered}
$$

- PP wave

$$
e^{D}=\frac{r_{5}^{2}}{2}, \quad y=\frac{1}{4} r_{5}^{2} r_{2}, \quad x_{2}=\frac{r_{5}^{2}}{4}-\frac{r_{2}^{2}}{2}
$$

- Translational invariance in x_{1} : linear equation

$$
\begin{aligned}
e^{D}= & \rho^{2}, \quad \rho \partial_{\rho} V=y, \quad \partial_{\eta} V=x_{2} \\
& \frac{1}{\rho} \partial_{\rho}\left(\rho \partial_{\rho} V\right)+\partial_{\eta}^{2} V=0 \quad \text { Ward ' } 90
\end{aligned}
$$

- Compactification of x_{1} : type IIA gravity duals of the BMN matrix model

Solution of gauged SUGRA

- M theory on S^{4} : gauged SUGRA in 7D
- field content: $S L(5, R) / S O(5)$ coset,
$S O(5)$ gauge field, five 3-forms
Perini, Pilch, van Nieuwenhuizen '84
- 1/2 BPS black hole: symmetry group
$S O(6) \times S O(3) \times S O(2) \times U(1) \quad$ Liu, Minasian '99
- Our goal: regular supersymmetric solution
- symmetry $S O(6) \times S O(3) \times U(1)$
- excited fields:

$$
\begin{aligned}
V_{I}^{i} & =\left[\begin{array}{cc}
e^{-3 \chi} g & \mathbf{0}_{2 \times 3} \\
\mathbf{0}_{3 \times 2} & e^{2 \chi} \mathbf{1}_{3 \times 3}
\end{array}\right], \quad A_{\mu I}^{J}=\left[\begin{array}{cc}
i A_{\mu} \sigma_{2} & \mathbf{0}_{2 \times 3} \\
\mathbf{0}_{3 \times 2} & 0_{3 \times 3}
\end{array}\right] \\
g & =\exp \left(i \theta \sigma_{2}\right) \exp \left(-\rho \sigma_{3}\right) \in S L(2, R) / U(1)
\end{aligned}
$$

- Regular solution exists \& gives e^{D}

Relation to known solutions

- $\mathcal{N}=2$ superconformal field theories
- 16 supercharges, $S O(4,2) \times S U(2) \times U(1)$
- double analytic continuation of 11D solutions:

$$
d \Omega_{5}^{2} \rightarrow-d s_{A d S_{5}}^{2}, \quad t \rightarrow \psi
$$

- different boundary conditions
- example of a solution

$$
e^{D}=\frac{1}{x_{2}^{2}}\left(\frac{1}{4}-y^{2}\right)
$$

Maldacena, Nunez '00

- new feature: space ends at $y=1 / 2$:

$$
\psi \sim \psi+2 \pi
$$

- M2 brane with mass deformation
- IIB with x_{1} isometry \rightarrow IIA $\rightarrow \mathrm{M}$ theory
- Bena \& Warner solutions with regular BC

Summary

- Geometries dual to chiral primaries: no singularities \& horizons
- All $1 / 2$ BPS gravity solutions for type IIB
- reduction to 3D Laplace equation
- boundary conditions and free fermions
- explicit solutions in terms of integrals
- fluxes and topologies
- All 1/2 BPS solutions of 11D SUGRA
- reduction to 3D Toda equation
- specific boundary conditions
- examples: AdS, pp wave
- new regular solution of gauged SUGRA
- Future directions
- properties of the new geometries
- 1/4 BPS states

