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Introduction

2D string theory illuminates two topics of recent investigations, providing

• A solvable example of open/closed string duality

• A laboratory for the study of tachyon condensation

The 2D closed string background

ds
2
= dφ

2 − dx
2
, Φ = 1

2Qφ , V = µ e
bφ

,

with Q = b + b−1 = 10−D
4α′ , is a self-consistent perturbative string background at low

energy. The tachyon background is strongly coupled at high energy:

V

φ

weak coupling strong coupling
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The model has an open string dual that controls the high energy behavior – large N

matrix QM on N unstable D0-branes (type 0B), or N D0-D0 pairs (type 0A). The open

string tachyon condensate on the decayed branes appears to realize the dynamics of closed

string worldsheets, neatly bringing together the two avenues of investigation.

The Gauss law of the open string gauge field projects the dynamics onto the U(N)

singlet sector of the matrix. The physical degrees of freedom are the matrix eigenvalues,

which behave as free fermions in an appropriate potential. The potential U(λ) in the

continuum limit is an inverted oscillator U(λ) = − λ2

4α′ for type 0B, and

U(λ) = −
λ2

4α′
+
q2 − 1/4

2λ2

for type 0A (q is the net D0 charge of the background). We focus on the type 0A theory,

in order to eliminate subtleties associated to the 2 → 1 map of λ-space to φ-space.

type  0B

µ µ

type  0A
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High-energy scattering

What does high-energy scattering look like? The free fermions enable us to compute

the S-matrix exactly (Moore-Plesser-Ramgoolam 9111035).

The only physical state of the 2D type 0A string (at generic momenta) is the tachyon;

in the matrix formulation, the tachyon is a density wave on the Fermi surface

Vω = e
iω(x±φ)

e
Qφ/2 ⇔ δρ = δψ

†
ψ ∼ 1

2λ e
i(x∓ω log |λ|)

The S-matrix is evaluated by LSZ reduction of correlations of fermion bilinears. For

instance for 1 → N scattering

R(      )ω−ξ

R (    )* −ξ

t

λ

ω

1ω 2ω

N

ω
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The scattering fermions pick up a phase in reflecting off the potential,

ψ(λ)
λ→−∞∼ 1√

πλ

[
e
−iλ2/2+iω log |λ|

+ R(ω)e
−iλ2/2−iω log |λ|

]
i.e. R(ω) is the reflection coefficient for the one-particle QM problem in the potential

U(λ):

R(ω) =
∣∣∣q24 − 1

16 + µ
2
∣∣∣−iω Γ(1

2 + q
2 + iω − iµ)

Γ(1
2 + q

2 − iω + iµ)

Holes pick up R∗(−ω). (Note that we measure energy w.r.t. the fermi level −µ.)

There are also “leg-pole” factors in the relative normalization of the worldsheet and

matrix model representatives of the asymptotic states

Vω = Γ(+iω)
Γ(−iω) δρ(ω)

we will consider quantities such as the number distribution in the final state, for which

these factors play no essential role. Note, however, that these factors are essential for

reproducing low-energy gravitational effects, such as the scattering of a tachyon from the

gravitational field produced by another tachyon (Natsuume-Polchinski 9402156).
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The 1 → N amplitude is thus

AN(ω|ωi) =
∑

S⊂{1,···,N}

(−1)
|S|

∫ ω

ωS

dξ R(ω − ξ)R
∗
(−ξ)

where ωS =
∑k

l=1 ωjl and |S| = k for S = {j1, · · · , jk}. With a few tricks, one can

do the sum:

AN =
∣∣∣q24 − 1

16 + µ
2
∣∣∣−iωiN−1

∫ ∞

−∞

dt

2t
G(t) e

2itµ
N∏
j=1

2 sin(ωjt)

where G(t) is the Fourier transform of the reflection amplitude of the particle-hole pair

(so t is the time difference in the bounce of the particle vs. that of the hole)

G(t) =

∫ ∞

−∞

dν

2π
e
itν
F

(
ω−ν

2

)
F

(
ω+ν

2

)
, F (ξ) =

Γ(12+
q
2+iξ)

Γ(12+
q
2−iξ)
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The function G(t) is approximately constant for t . 1/
√
ω, with G(0) ∼

√
ω
2π :
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ω1/2

|G|

t

One of the physically interesting quantities we can calculate is the number distribution

PN of final state tachyons in 1 → N scattering, which is defined by

PN =
1

N !

1

ω

∫ ∞

0

N∏
i=1

dωi

ωi
δ
(∑

i

ωi − ω
)∣∣∣AN(ω|ωi)

∣∣∣2 .
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For N of order a few, the integral for AN is dominated by the region where G is

constant; one can pull |G(0)|2 out of the integrals, and then compute them in closed form

with the result (we set µ = 0, in which case P2k ≡ 0)

P2k−1 ∼
(2π)2k−1(22k − 1)|B2k|

(2k)!ω
∼

22k

ω

For N large enough that we can treat the final states statistically, we can approximate the

integral over the final state energies by saddle point, with 〈ωi〉 = ω/N . The saddle point

integral leads to

PN ∼
1

N !

1

ω

(
8
√
π

)N

To summarize, the number distribution for 1 → N scattering is peaked at Nmax ∼ logω:

NP

Nlog ω
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Similar results apply for 2 → N scattering. There are two ring diagrams

ω −ξR(      )ω−ξ

R (    )* −ξ

ωa ωb

t

λ

ω

ω 2ω

N

1
1ω

ωN

ωa

ωb

R (    )* −ζ

R (    )* −ξ

bR(       )

2ω

aR(       )ω −ζ

λ

t

Consider for example both incoming particles of the same energy; for µ=0 and N even

A2→N

(
ω

2
,
ω

2

∣∣∣∣ωi) =
1

π

∫ ∞

0

dt

t

∫ ∞

0

ds

s

Gω(t)

 N∏
l=1

2i sinωl(s+ t)−
N∏
l=1

2i sinωl(s− t)


−

∑
A∪B={1,···N}

GωA ∗GωB(t)

∏
l∈A

2i sinωl(s+ t)−
∏
l∈A

2i sinωl(s− t)

 ∏
j∈B

(−2i) sinωjs


Here f ∗g is the convolution f ∗g(t) =

∫∞
−∞ duf(u)g(t− u). Qualitatively, this

amplitude will have a similar structure to the 1 → N amplitude. The k → N distribution

is also much the same – for N large enough that statistical methods apply, the probability

to find N particles in the final state is a steeply decreasing function of N .

8



EJM 9/16/2004

Black holes?

This result contrasts strongly with expectations from the low energy effective theory

of dilaton gravity. This theory has a 2D black hole solution

ds
2

= dφ
2 ± tanh

2
(1
2Qφ) dx

2

Φ = Φ0 + log[cosh(1
2Qφ)] ,

with Q2 = 2
k−2 = 4 (k = 5/2) for the 2D type 0 string. This background admits an

exact worldsheet description as the SL(2,R)
U(1) gauged WZW model, and so naively is on as

solid ground as the tachyon background described by Liouville CFT.1

Can one form black holes in 2D string theory? If black holes can form, they should be

the generic intermediate states due to their large density of states; they should dominate

the behavior of the S-matrix. The thermodynamics of such black holes is

SBH ∼ `sE , TH ∼ `s

1The low-energy theory also has RR charged black hole solutions when q 6= 0; it is not known whether there is a corresponding
exact worldsheet CFT.
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The black hole thus emits its energy E in the form of quanta of string scale energy.

The expected number of emitted quanta would be

〈N〉 ∼ `sE

which is not what is found in the exact S-matrix, whose number distribution is peaked at

〈N〉 ∼ logE.

The reason that it is unlikely to find a large number of outgoing particles in the

scattering of a small, fixed number of high-energy ingoing particles stems from the basic

structure of the ring diagrams. For an initial state of k tachyons, the number of

particle-hole pairs in the intermediate fermion state is at most k. This state has a very

small overlap with an outgoing state

|out〉 = ψ
†
ψ1ψ

†
ψ2 · · ·ψ

†
ψN |vac〉

where in normal ordering the product of fermion operators we must select only those with

at most k particle and hole creation operators. This is a very small fraction of the totality

of excitations that can be created by this operator.
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This result suggests that black holes do not form in 2D string theory. In fact, many

aspects of 2D string theory indicate that there is nothing in 2D string theory that could

reasonably be called a black hole:

Entropy: Matrix quantum mechanics in the singlet sector does not have a Hagedorn

density of states. In many examples of the gauge/gravity correspondence, the formation

of black holes is associated with a deconfinement transition in the gauge theory, in

which one begins to access the non-singlet degrees of freedom of the gauge theory (e.g.
AdS5 × S5/N = 4 SYM). These degrees of freedom are projected out of the matrix

model of 2D string theory.

Conservation laws: The free fermionic character of the matrix model leads to an

infinite set of conserved quantities; the time-independent ones are

Q` =

∫
dε ε

`
b
†
εbε

where b, b† are fermion creation and annihilation operators. Sen (0408064) has argued

that the conserved charges of the 2D black hole are Q1 = ω, Q` = 0.
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States with these properties in the free fermion Hilbert space consist of a macroscopic

number of very soft tachyon excitations – more or less a coherent state of soft tachyons:

Q1 =

N∑
i=1

±ωi = ω ; Q` =

N∑
i=1

±ω`i ∼ o(N
1−`

) , ` > 1

The black hole charges are approached in the limit of large N . Since the phase space of

such states is not exponentially large, there is no reason for the evolution to be attracted

to such states as intermediate states. Furthermore, the process of soft tachyons making up

this state generating a Hawking quantum of energy ms is the time reverse of the process

of one energetic tachyon making many soft ones, which we argued above is kinematically

suppressed. The outgoing state will not look like Hawking radiation from a 2D black hole.
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The worldsheet CFT: The string scale curvature near the horizon of the dilaton black

hole geometry

ds
2

= dφ
2 ± tanh

2
(1
2Qφ) dx

2

Φ = Φ0 + log[cosh(1
2Qφ)] ,

points to the importance of an underlying exact CFT, the SL(2,R)
U(1) gauged WZW model.

The putative Euclidean black hole geometry is a capped semi-infinite cylinder often

referred to as the “cigar”:

curvature ~   Q

x

φ
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The background can be thought of as the nonlinear completion of the linearized

deformation eQφ∂X∂̄X of the metric away from flat spacetime. A shift in φ makes

e−2Φ0 the coupling in front of the asymptotic graviton; as in higher dimensions, this

coefficient of the leading asymptotic deformation (of the time component G00 of the

metric away from flat spacetime) is the mass of the black hole µbh = e−2Φ0.

A great deal is known about this CFT. There is a conformal bootstrap, analogous to

that of Liouville theory. In Liouville theory, one uses the two degenerate operators

V−b/2 = e
−bφ/2

, V−1/2b = e
−φ/2b

to derive constraints on correlators which fix them uniquely. The analogous operators in

the coset are the degenerate primary operators Φj of SL(2,R) current algebra, having

spin j = −3
2 and j = −k

2 .

The coupling constant of Liouville theory is the parameter b. The theory is self-dual

under b → 1/b, which preserves the slope Q = b + 1/b of the linear dilaton, and

exchanges the two degenerate operators.
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The Euclidean SL(2,R)
U(1) gauged WZW model also has a strong/weak coupling duality,

but it is not self-dual. Rather, the dual is the Sine-Liouville theory

SSL =
1

4π

∫
d

2
zd

2
θ
[
(DφD̄φ+DXD̄X) +QR

(2)
φ+ µsl cosR[Xl−Xr] e

1
Q
φ
]

where again Q2 = 2
k−2; X is compactified on a circle of radius R = 2/Q, and Xl−Xr

is the axial component of X. The conformal bootstrap for this theory yields the same

correlation functions as the coset model, and determines a relation µsl = µsl(µbh).

In a sense, the duality exchanges the roles of the asymptotic graviton interaction

µbh e
Qφ∂X∂̄X, and the Sine-Liouville interaction µsle

1
Q
φ
cosR(Xl−Xr). The metric

deformation is the dominant asymptotic (at φ → −∞) for Q � 1, while the

Sine-Liouville coupling is dominant for Q � 1. Since Q = 2 for the type 0 string, it

appears that the Sine-Liouville description is somewhat more appropriate for this 2D string

background.

Note that the Sine-Liouville potential acts as a generating function for vortices in

the worldsheet partition function. The SL(2,R)
U(1) coset/Sine-Liouville equivalence leads to a

natural candidate for a matrix model equivalent to the Euclidean “black hole” – simply

turn off the Liouville potential and turn on a condensate of vortices (winding tachyon)

in the compactified Euclidean theory (Kazakov-Kostov-Kutasov 0101011). But again, the

matrix description of the background has a closer affinity to a tachyon condensate than a

Euclidean black hole.

15



EJM 9/16/2004

In higher dimensions, when the curvature of a black hole reaches string scale,

it undergoes a (correspondence) phase transition to a gas of strings. The apparent

dominance of the Sine-Liouville coupling is an indication that the “black hole” of 2D

string theory is actually on this other side of the correspondence point, where it is better

thought of as a gas or condensate of strings.

If one considers the family of noncritical string backgrounds SL(2,R)
U(1) ×CFTĉ, one can

vary Q by varying ĉ, Q2 = 4 − 1
2ĉ. The Hagedorn temperature of a perturbative string

gas is

β
pert
H = 2π

√
ĉα′/4

while the Hagedorn temperature of the black hole geometry is given by the asymptotic

radius of the cigar

β
cigar
H = 2π

√
2α′/Q2

The two are equal when Q2 = 2, (k=3), which is precisely the point at which the

Sine-Liouville interaction starts to dominate. Thus the crossover between dominance of

the cigar metric and dominance of the winding tachyon condensate appears to be related

to the correspondence transition. In this regard, recall that the Hagedorn transition of

perturbative strings can be described as the condensation of precisely this winding tachyon

(Atick-Witten 1988).
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Conclusions

• The D-particles of 2D string theory dominate high energy scattering. Essentially, a

high energy incoming tachyon becomes a high energy D-particle, together with the

hole it leaves behind; radiation from the D-particle is strongly suppressed.

• The nonperturbative formulation allows an exact formulation of the S-matrix.

Estimates of the resulting integrals show that the number distribution is peaked around

N ∼ logω outgoing particles.

• 2D dilaton black holes would give N ∼ ω outgoing particles.

• The 2D black hole is in a stringy regime. A variety of points of view suggest that

stringy effects dominate to the extent that black holes do not form.
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