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Correlated stability conjecture (CSC) [Gubser-Mitra *00]:

e A Gregory-Laflamme (GL) instability arises precisely when

there’s a thermodynamic instability.

What’s a thermodynamic instability?

e Say S = S(E,Q).
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If H has a negative eigenvalue, there’s an instability.

Form H = <

A negative eigenvalue means you can gain S by redistributing

E and/or () non-uniformly.

GL instability does precisely this.




Two caveats:
e You must be able to redistribute (). Else exclude it from
Hessian.

— Example: N coincident D1’s. ()p; can’t be redistributed
along the D1’s.

— Example: array of D0’s, N per cm?. (Qpg can be

redistributed, making array non-uniform.

e Finite size effects could prevent a GL instability

— Example: Black string on an S*' of radius R has a GL

instability only if R > ry (up to an O(1) factor).

— Example: Black hole in 4-d has a finite size horizon: stable

despite thermodynamic instability, C' < 0.




Why does it work?

e GL noted that Sblackhole > Sblackstring for large mass. Saymg
H > 0 is a local version of this.

e GL instability is an infrared effect, so it makes sense for

thermodynamics to dominate it.

In practice...

e Dispersion curve has w?(k) < 0 for k < k, (the unstable

modes).

e Simplest to look for the static perturbation at k£ = k.,

fields ~ cos kx for some x along the brane.




Understanding of GL seems still rather primitive! (Numerics

always seems required).
1. Endpoint of evolution of unstable horizons not known.

2. Existence of instability checked only for simple situations.

Point 2 is where CSC helps. There’s even a proof of CSC if there

are no (J’s [Reall 02].

Let’s apply CSC to D2-D0 bound state and then check the results

with numerics.

This is the simplest case where you can’t guess the right answer in

5 minutes.




Some intuitions:

e Highly non-extremal D2-D0 has a GL instability: charges don’t

matter.

e For extremal D2-D0, 7 = 1/Q3 + Q2, a convex function of Q.

So making )y non-uniform increases | 7—mnot favored.

o If )y > ()2, then D2 doesn’t matter. Continuous array of DO0’s
should have a GL instability [Aharony et al 04].

o If )y < (2, GL instability appears finitely far from

extremality [Gubser-Ozakin '03].




The answer:

CSC predicts GL in-
stability in shaded re-
gion only.

Numerics performed

for the points indi-

cated agree with this.

Next 8 slides show
how I got this.
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Thermodynamics:
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e Want S = S(M, Q07Q2).

e Have S, M, )y, ()2 in terms of rg, «, 6.
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Boundary of stability (the red line) is where det Hoy o = 0.

2 X 2 means we exclude (). Get

cscha = V3 cos.

The plot was in terms of

Qo /M = 5sinfsinh 2a /(7 4 4 cosh 2a)

. (4)
Q2 /M = 5cosfsinh 2a./(7 + 4 cosh 2a)

with lines of constant o shown.

Reall’s proof of CSC is for no ()’s. Hopefully extendable. Following
analysis may help pave the way.




We seek a static, non-uniform solution.
So KK reduce to only the (z',7) = (z#) directions:

ds?

2 = G drrde” — e*P1dt* + e*?2dxs + e*#3dQ)g
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Gauge fields like a1 have no dynamics, but they do impose
constraints. Suppose for example
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o = *(f2 + q2) + qo = const
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S gives correct dynamics for fields other than a;.




Some ghastly mess results for dynamics of G,,,,, ¢1, ¥2, ¥3, ag, and
the 2-d dilaton
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Schematically:

1
G V2L = e (R+4(09)?) — §gab(¢)awa¢b —V(p).

Write G, = 62"Gzi("kgro“nd: a conformal gauge.

Then perturbations are expressed in terms of six scalars:

<¢a> — (0-7 (I)a P1, P2, P3, dO)

(a few others, like ag, decouple). Ansatz is

Spa — Spgackground (T) + 590a(r) COS kxl .




R, — %G vt = 0 imposes two 1st order gauge conditions on
dp®(r), plus the eom for do(r) (2nd order).

So for 6 functions dp“(r), we have 10 integration constants:

6 x2—2=10. k is an 11" parameter.

Fix these 11 parameters by

e Normalizability at oo.

— Gives 6 conditions: think ¢(r;) = 0 for some big r.

e Regularity at the horizon.
— Most naturally analyzed in Kruskal coords—haven’t done it.

— r =g is a regular singular point of radial eoms. Allows a
rough-and-ready analysis, dropping subdominant terms in

eoms to obtain bc’s.

— Gives 5 conditions, including 0 A; = 0 at horizon.




Upshot: solve (mostly) 2nd order diffEQ’s from r = ry to r = oo,

subject to 5 bc’s at r =g and 6 at » = oo.

Suitable for a shooting algorithm: randomly fix 6 remaining

parameters at r = rg, integrate, check bc’s at r = oo.
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Numerics is prelimary—why?
e Analysis of bc’s at » = ry was loose.

e Setting six numerically computed functions of six variables to 0

1s not trivial.

o “Whiplash” effect—might find ¢“(r¢) = 0 as a result of

competition between large solns.
r+or
— Better to minimize / dr Z 0™ (r)]?.
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Non-commutative field theory at finite temperature:

A famous fact [Maldacena-Russo '99): thermodynamics at leading order

in large NV is unaffected by non-commutativity.
e Obvious: large NV < planar diagrams
e Planar vacuum diagrams escape non-commutative phases.
e True in supergravity: M, S, T are f-independent.

But there’s a catch: it was tacitly assumed that

(1, 2%] = i = const.

Roughly, ¥ o¢ Qg, so if ()y gets non-uniform, thermodynamic
behavior is vastly different from the ¥ = 0 case.

This happens if M /@ is big enough. Where is the transition to GL
instability?




It happens very close to extremality, where C' > 0.

e So for 0 < T < T,, bound state is stable.

e And for 1" > T,, GL instability arises.

e T'="1T, is on the red curve, det H = 0, i.e. cscha = V3 cos#.
Unravel various definitions to find:

e ¥ =27a ' tanf > /.

e Tension at extremality from D2’s is
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Note V9T — 0 in the NCFT limit where o/ < 9.

So NCF'T description of D2-D0 is strictly a zero-temperature
statement. For 1" > 0, ¥ = (¢, 7).

Recall the seemingly innocuous rescaling of coords in NCFT:

e Fup = gup + Bap enters DBI action: S ~ [ d*¢ \/det E,p3.

9B
o o8 — Gob 1 S and G,z is the open string metric.
T

o (1,7, 7%) = (t,x'/cos®, 2%/ cos®) are chosen so that

G&B = 77@5.

Massless open strings propagate on null geodesics of G, 3, which is

to say at v = cos 0 in the closed string metric g,3.

v < 1: the bound state is soft and squishy. Extreme limit of only
DO0’s has no rigidity at all. That’s why GL comes in.




Some caveats:

I'm relying on CSC: numerics only two points (so far).

I'm using supergravity approximation, so it’s conceivable that
some 1" > 0 giving a highly curved horizon avoids GL
instability.

CSC as it stands doesn’t tell us k. or the typical |w| of the

unstable modes.

Closed strings decouple, right? Probably so, but there is an

order of limits issue in discussing thermodynamics.




Conclusions:

Presence of a Gregory-Laflamme instability is dictated by

(local) thermodynamic considerations: det H < 0.
Boundary of stability can be arbitrarily close to extremality.

Non-commutative field theory is a good description of D2-D0
only at T' = 0 (or possibly T" below what SUGRA can see).

Several types of “charge” may be redistributed: ()pg, angular

momenta, etc.

Near det H = 0, evolution of GL probably slides us along the
boundary of stability. May be easier to find the endpoint.

Many other systems to study (work in progress with J. Friess).
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