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Correlated stability conjecture (CSC) [Gubser-Mitra ’00]:

• A Gregory-Laflamme (GL) instability arises precisely when

there’s a thermodynamic instability.

What’s a thermodynamic instability?

• Say S = S(E, Q).

• Form H =

(

∂2S/∂M2 ∂2S/∂M∂Q

∂2S/∂M∂Q ∂2S/∂Q2

)

.

• If H has a negative eigenvalue, there’s an instability.

• A negative eigenvalue means you can gain S by redistributing

E and/or Q non-uniformly.

• GL instability does precisely this.
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Two caveats:

• You must be able to redistribute Q. Else exclude it from

Hessian.

– Example: N coincident D1’s. QD1 can’t be redistributed

along the D1’s.

– Example: array of D0’s, N per cm2. QD0 can be

redistributed, making array non-uniform.

• Finite size effects could prevent a GL instability

– Example: Black string on an S1 of radius R has a GL

instability only if R > rH (up to an O(1) factor).

– Example: Black hole in 4-d has a finite size horizon: stable

despite thermodynamic instability, C < 0.
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Why does it work?

• GL noted that Sblackhole > Sblackstring for large mass. Saying

H ≥ 0 is a local version of this.

• GL instability is an infrared effect, so it makes sense for

thermodynamics to dominate it.

In practice...

• Dispersion curve has ω2(k) < 0 for k < k∗ (the unstable

modes).

• Simplest to look for the static perturbation at k = k∗:

fields ∼ cos kx for some x along the brane.
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Understanding of GL seems still rather primitive! (Numerics

always seems required).

1. Endpoint of evolution of unstable horizons not known.

2. Existence of instability checked only for simple situations.

Point 2 is where CSC helps. There’s even a proof of CSC if there

are no Q’s [Reall ’02].

Let’s apply CSC to D2-D0 bound state and then check the results

with numerics.

This is the simplest case where you can’t guess the right answer in

5 minutes.
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Some intuitions:

• Highly non-extremal D2-D0 has a GL instability: charges don’t

matter.

• For extremal D2-D0, τ =
√

Q2
2 + Q2

0, a convex function of Q0.

So making Q0 non-uniform increases
∫

τ—not favored.

• If Q0 � Q2, then D2 doesn’t matter. Continuous array of D0’s

should have a GL instability [Aharony et al ’04].

• If Q0 � Q2, GL instability appears finitely far from

extremality [Gubser-Ozakin ’03].
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The answer:

CSC predicts GL in-

stability in shaded re-

gion only.

Numerics performed

for the points indi-

cated agree with this.

Next 8 slides show

how I got this.
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SIIA =
1

2κ2

∫

d10x
√

G

[

e−2φ

(

R + 4(∂φ)2 − 1

2
H2

3

)

− 1

2
F 2

2 − 1

2
F̃ 2

4

]

with F̃4 = F4 + A1 ∧ H3

(1)

ds2
str = H−1/2(−hdt2 + D(dx2

1 + dx2
2)) + H1/2

(

1

h
dr2 + r2dΩ2

6

)

H = 1 +
r5
0 sinh2 α

r5
D =

1

H−1 sin2 θ + cos2 θ
h = 1 − r5

0

r5

A1 = cothα sin θ

(

1 − 1

H

)

dt

A3 = cothα sec θ

(

1 − D

H

)

dt ∧ dx1 ∧ dx2

e2φ = H1/2D B2 = tan θ

(

1 − D

H

)

dx1 ∧ dx2
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Thermodynamics:

M =
V2Ω6

2κ2
r5
0(6 + 5 sinh2 α)

T =
5

4πr0 coshα
S =

2πV2Ω6

κ2
r6
0 coshα

µ2 = µ cos θ Q2 = Q cos θ µ0 = µ sin θ Q0 = Q sin θ

µ = tanhα Q =
5V2Ω6

2κ2
r5
0 sinhα coshα

(2)

• Want S = S(M, Q0, Q2).

• Have S, M , Q0, Q2 in terms of r0, α, θ.

• Use

(

∂f

∂yi

)

yj

=
|∂(y1, . . . , ŷi, f, . . . , yn)/∂(x1, . . . , xn)|

|∂(y1, . . . , yn)/∂(x1, . . . , xn)| .
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Boundary of stability (the red line) is where detH2×2 = 0.

2 × 2 means we exclude Q2. Get

cschα =
√

3 cos θ . (3)

The plot was in terms of

Q0/M = 5 sin θ sinh 2α/(7 + 4 cosh 2α)

Q2/M = 5 cos θ sinh 2α/(7 + 4 cosh 2α)
(4)

with lines of constant α shown.

Reall’s proof of CSC is for no Q’s. Hopefully extendable. Following

analysis may help pave the way.
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We seek a static, non-uniform solution.

So KK reduce to only the (x1, r) = (xµ) directions:

ds2
str = Gµνdxµdxν − e2ϕ1dt2 + e2ϕ2dx2

2 + e2ϕ3dΩ2
6

A1 = a1 + a0dx2 + ã0dt . . .
(5)

Gauge fields like a1 have no dynamics, but they do impose

constraints. Suppose for example

S[a1, . . .] =

∫

L

L =

∫

1

2
eϕ(f2 + q2) ∧ ∗(f2 + q2) + q0f2

πa ≡ ∗(f2 + q2) + q0 = const

Ŝ[πa, . . .] =

∫

(L − πaf2) .

(6)

Ŝ gives correct dynamics for fields other than a1.
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Some ghastly mess results for dynamics of Gµν , ϕ1, ϕ2, ϕ3, ã0, and

the 2-d dilaton

Φ = φ − 1

2
(ϕ1 + ϕ2 + 6ϕ3) . (7)

Schematically:

G−1/2L = e−2Φ
(

R + 4(∂Φ)2
)

− 1

2
Gab(ϕ)∂ϕa∂ϕb − V (ϕ) . (8)

Write Gµν = e2σGbackground
µν : a conformal gauge.

Then perturbations are expressed in terms of six scalars:

(ϕa) = (σ, Φ, ϕ1, ϕ2, ϕ3, ã0) (9)

(a few others, like a0, decouple). Ansatz is

ϕa = ϕa
background(r) + δϕa(r) cos kx1 . (10)
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Rµν − 1
2
GµνR = 0 imposes two 1st order gauge conditions on

δϕa(r), plus the eom for δσ(r) (2nd order).

So for 6 functions δϕa(r), we have 10 integration constants:

6 × 2 − 2 = 10. k is an 11th parameter.

Fix these 11 parameters by

• Normalizability at ∞.

– Gives 6 conditions: think ϕ(rf ) = 0 for some big rf .

• Regularity at the horizon.

– Most naturally analyzed in Kruskal coords—haven’t done it.

– r = r0 is a regular singular point of radial eoms. Allows a

rough-and-ready analysis, dropping subdominant terms in

eoms to obtain bc’s.

– Gives 5 conditions, including δAt = 0 at horizon.
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Upshot: solve (mostly) 2nd order diffEQ’s from r = r0 to r = ∞,

subject to 5 bc’s at r = r0 and 6 at r = ∞.

Suitable for a shooting algorithm: randomly fix 6 remaining

parameters at r = r0, integrate, check bc’s at r = ∞.
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Numerics is prelimary—why?

• Analysis of bc’s at r = r0 was loose.

• Setting six numerically computed functions of six variables to 0

is not trivial.

• “Whiplash” effect—might find ϕa(rf ) = 0 as a result of

competition between large solns.

– Better to minimize

∫ rf +δr

rf−δr

dr
∑

a

|ϕa(r)|2.
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Non-commutative field theory at finite temperature:

A famous fact [Maldacena-Russo ’99]: thermodynamics at leading order

in large N is unaffected by non-commutativity.

• Obvious: large N ↔ planar diagrams

• Planar vacuum diagrams escape non-commutative phases.

• True in supergravity: M , S, T are θ-independent.

But there’s a catch: it was tacitly assumed that

[x̃1, x̃2] = iϑ = const.

Roughly, ϑ ∝ Q0, so if Q0 gets non-uniform, thermodynamic

behavior is vastly different from the ϑ = 0 case.

This happens if M/Q is big enough. Where is the transition to GL

instability?
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It happens very close to extremality, where C > 0.

• So for 0 ≤ T < Tc, bound state is stable.

• And for T > Tc, GL instability arises.

• T = Tc is on the red curve, detH = 0, i.e. cschα =
√

3 cos θ.

Unravel various definitions to find:

• ϑ = 2πα′ tan θ � α′.

• Tension at extremality from D2’s is

Q2

V2

=
5Ω6

2κ2
r5
0 sinhα coshα cos θ = N2τD2 =

N2

gs4π2α′3/2
. (11)

Find
√

ϑTc =
#

(gsN2)1/5

(

2πα′

ϑ

)3/10
[

1 + O(α′2/ϑ2)
]

.
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Note
√

ϑT → 0 in the NCFT limit where α′ � ϑ.

So NCFT description of D2-D0 is strictly a zero-temperature

statement. For T > 0, ϑ = ϑ(t, ~x).

Recall the seemingly innocuous rescaling of coords in NCFT:

• Eαβ = gαβ + Bαβ enters DBI action: S ∼
∫

d3ξ
√

detEαβ .

• Eαβ = Gαβ +
ϑαβ

2πα′
, and Gαβ is the open string metric.

• (t̃, x̃1, x̃2) = (t, x1/ cos θ, x2/ cos θ) are chosen so that

Gα̃β̃ = ηαβ .

Massless open strings propagate on null geodesics of Gαβ , which is

to say at v = cos θ in the closed string metric gαβ.

v � 1: the bound state is soft and squishy. Extreme limit of only

D0’s has no rigidity at all. That’s why GL comes in.
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Some caveats:

• I’m relying on CSC: numerics only two points (so far).

• I’m using supergravity approximation, so it’s conceivable that

some T > 0 giving a highly curved horizon avoids GL

instability.

• CSC as it stands doesn’t tell us k∗ or the typical |ω| of the

unstable modes.

• Closed strings decouple, right? Probably so, but there is an

order of limits issue in discussing thermodynamics.
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Conclusions:

• Presence of a Gregory-Laflamme instability is dictated by

(local) thermodynamic considerations: detH < 0.

• Boundary of stability can be arbitrarily close to extremality.

• Non-commutative field theory is a good description of D2-D0

only at T = 0 (or possibly T below what SUGRA can see).

• Several types of “charge” may be redistributed: QD0, angular

momenta, etc.

• Near detH = 0, evolution of GL probably slides us along the

boundary of stability. May be easier to find the endpoint.

• Many other systems to study (work in progress with J. Friess).
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