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Introduction

Much has been learned from relating the gravity and gauge theory
descriptions of the D1-D5-P system.

• NS-NS vacuum ↔ AdS3 × S3 × T 4 (or K3)

• low energy chiral primaries ↔ sugra perturbations

• Thermal ensemble ↔ BTZ ×S3 × T 4

More recently, we have learned (Lunin, Mathur; Lunin, Maldacena, Maoz)

• chiral primaries ↔ 2-charge supertubes: D1-D5 → kk

More general 3-charge supertubes exist; where do they fit in the
picture?
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Review of 2-charge supertubes (Mateos, Townsend)

Start with a flat Dp-brane in x0,1,...p, and turn on worldvolume electric and magnetic
fields

2πF02 = 1, 2πF12 = B

Induces F1-strings, D(p-2)-branes, and P1:
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Np−2 ≈ BRL

NF1 ≈ RTp/B

P1 ≈ RLTp

• Np−2NF1 − J = 0, J ≡ P1R

Born-Infeld action gives

LBI = −

√

− det(ηµν + 2πFµν) ≈ −B

and so the energy is

H = πEF02 − LBI = QF1 + Qp−2
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Open string quantization

Fluxes described by open string metric:

〈Xµ(τ1)X
ν(τ2)〉 = −Gµν ln |τ1 − τ2|
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i

2
θµνǫ(τ − τ ′)
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−1 + B−2 −B−1 0
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



• G11 = 0! ⇒ 〈X1(z1)X
1(z2)〉 = 0

So we can start with a zero momentum vertex operator ǫµ∂n,tX
µ and

attach a factor eip1X
1

to get a dimension 1 primary (Kruczenski, Myers, Peet, Winters)

V = ǫµ∂n,tX
µeip1X

1

, Gµνǫµpν = 0

• Adds momentum P1 but no energy or other charge.

• Multiple such operators can be added, and exponentiated
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The Dp-brane can change its shape and local flux density at no cost in energy

F1

P

F1

J

In the tubular case J is angular momentum. For a circular tube

J = Np−2NF1

Adding open string excitations decreases J , and counting is same as for
momentum of gas in 1 + 1 dim:

S ∼
√
c∆J =

√

c(Np−2NF1 − J)

• Counting also done by dualizing to FP ( Lunin, Mathur) or in Born-Infeld (Marolf, Palmer)

Three-Charge Supertubes – p.5/21



Comments

• Radius formula gives R2 ∼ gs, so at weak coupling the tube
structure is lost. Makes counting at weak coupling more subtle.

• But since tubes become large at strong coupling, they are more
directly related to finite size gravitational description.

• Entropy of 2-charge tube too small to correspond to classical black
hole horizon, but was given a stretched horizon type interpretation
(Lunin, Mathur)

Three-Charge Supertubes – p.6/21



3-charge supertubes (Bena, P.K.)

To compare with black hole physics would like a tube carrying D1-D5-P
charges. But more convenient to dualize and take D0-D4-F1 since F1 appears
in supertube construction.

Starting from

D0 + F1 → d2

and dualizing, we have

D4 + F1 → d6

D0 +D4 → ns5

• So we expect a tube with 3 independent dipole charges: d2, d6, and ns5.

• For now set ns5 dipole to zero, since we can’t describe it via flux in
Born-Infeld. Can include by T-dualizing ns5 → kk ≈ AN singularity. Or,
work in M-theory (Elvang et. al.)
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On a D6-brane turn on fluxes F02, F12, F34, F56 to induce charges

F02 ∼ F1 − strings, F12 ∼ D4 − branes, F12F34F56 ∼ D0 − branes

But also have D2-branes from

F12F34, F12F56, F34F56

First two are unwanted; last will give wanted d2 dipole.

• Cancel unwanted D2-branes by introducing second D6-brane with flipped
signs of F34 and F56.

• Generalizing to N6 such D6-branes, we get a BPS configuration with
energy

H = QF1 +QD0 +QD4

and momentum

J = P1R =
NF1ND4

ND6 Three-Charge Supertubes – p.8/21



Quantizing the neutral open strings proceeds just as before. Again find BPS fluctuations
of shape and flux profiles, and can form circular tube.

Spectrum of charged strings more involved (e.g. Callan et. al.). Need to work with superstring.
Zero mode problem in x3,4,5,6 like charged particle in magnetic field

[P3, P4] ≈ iF34, [P5, P6] ≈ iF56

Get a Landau level degeneracy

V3456F34F56

• Combine these with massless states from R or NS sector.

• Including X0,1,2 part, we can again attach eip1X
1

factors at no cost in energy.

• With N6 D6-branes, have number of species

N2
6 V3456F34F56 ≈ N6n2

• Entropy is therefore

S ∼

√

N6n2

(

NF1ND4

ND6
− J

)

=
√

n2NF1ND4 − N6n2J
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Comments

• Still too small to correspond to black hole area. Need the ns5 dipole!

• Enhancement of entropy compared to 2-charge case came from Landau
degeneracy. Corresponds to changes in non-abelian part of flux.

• Since states are described by Landau levels, wavefunctions are
inhomogeneous in x3,4,5,6.

• So sugra solutions for microstates need to capture non-abelian degrees of
freedom, and inhomogeneity on T 4.
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Including the ns5 dipole charge

• Including NS5 in the flat case yields a brane carrying charges
D2-D6-NS5-P. These are the standard ingredients of the 4d black hole,
after compactification on T 6.

• Entropy given by quartic E7(7) invariant:

S = 2π
√
J4

− J4 = xijyjkx
klyli − xijijx

klykl/4

+ ǫijklmnop(xijxklxmnxop + yijyklymnyop)

with the charges identified as

x12 = ND0, x34 = ND4, x56 = NF1, x78 = 0

y12 = nd6, y34 = nd2, y56 = nns5, y78 = J

• System now has finite size S2 × T 6 horizon. As before, we can instead curl
up one direction into a circle and compactify on T 4. Result should be a
horizon of topology S1 × S2 × T 4 — a black ring. Entropy should agree
with above.
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Supertubes and BMPV

• BMPV has Jφ = Jψ with Jφ,ψ ≤
√

N1N5Np.

• Supertube (T-dualized) can have Jφ 6= Jψ and obeys
−N1Np ≤ Jφ,ψ ≤ N1Np.

• Interesting to try to slowly drop supertube through BMPV horizon.
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• For general tube profile r(σ), ψ(σ) find expected BPS no force condition.
Shape constrained by

(Np)tube =

∫

dσ

B(σ)
(1 +

(Q5)hole
r2

)
(

sin2θ r2(∂σψ)2 + (∂σr)
2)

Horizon at r = 0

• For circular case can bring tube to r = 0 provided

(N1Np)tube ≤ (N5)hole ⋆

So when ⋆ satisfied looks like we can perturb BMPV to Jφ 6= Jψ. What is
the solution?

• Can tube straddle horizon? No: need ∂σr|r=0 = 0.

• Can we overspin BMPV and generate CTCs? Probe adds

Jtube = (N1Np)tube

and with ⋆ satisfied find BMPV bound respected:
(

(N1)hole + (N1)tube

)(

(Np)hole + (Np)tube

)

(N5)hole ≤ (Jhole + Jtube)
2
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Microscopic description of black rings (I. Bena, P.K.)
Supergravity solution for 3-charge supertube was found by (Elvang, Emparan, Mateos, Reall) and
generalized further by (Bena, Warner; EEMR; Gauntlett, Gutowski)

In IIB frame solutions carries charges

N1 D1(5), N2 D5(56789), N3 P (5)

and dipole charges

n1 d5(x6789), n2 d1(x), n3 kk(x56789)

• Ni are conserved charges measured at infinity. Due to Chern-Simons terms, these
differ from charges N i measured at ring:

N1 = N1 − n2n3, and permutations

• Similarly, “harmonic" functions Zi are no longer harmonic; have delocalized sources
from fluxes.

Z1 = 1 +
Q1

Σ
+

q2q3ρ2

Σ2

with Σ =
√

(ρ2 − R2)2 + 4R2ρ2 cos2 θ.

• 1/Σ is a harmonic function sourced on the ring: ρ = R, cos θ = 0. R = 0 gives
BMPV.
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• Solution carries angular momenta

Jφ = JBMPV = −1

2

∑

i

niN i − n1n2n3, Jψ = −JBMPV + Jtube

with

Jtube =
RKKV4

(2π)4(α′)4g2
(q1 + q2 + q3)R

2

• Entropy is

S = 2π

[

− 1

4
(n2

1N
2
1 + n2

2N
2
2 + n2

3N
2
3)

+
1

2
(n1n2N1N2 + n1n3N1N3 + n2n3N2N3) − n1n2n3(Jψ + Jφ)

]1/2

= 2π
√
J4

• Solutions have 7 free parameters, but only 5 conserved charges. So these
black objects have “hair". Makes it especially interesting to understand
them on gauge theory side.
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Decoupling limit

• As with usual D1-D5-P system, we drop the 1 from the D1 and D5
harmonic functions, but keep it in the P harmonic function.

• Solution is then asymptotic to the same AdS3 × S3 × T 4 as for usual
D1-D5-P, so we should be able to understand the black rings as states in
the usual CFT.

• Work at orbifold point. Have an effective string of length N1N2 which can
be broken up into any number of integer length components. Each
component has 4 bosons and 4 fermions. Fermions are doublets under
SO(4) ≈ SU(2)L × SU(2)R R-symmetry (rotation) group.

• Diagonal generators are

JL = Jψ − Jφ, JR = Jψ + Jφ

• Black rings combine properties of BMPV and 2-charge supertubes, and
we know how to describe these at orbifold point, so can hope for same
with rings.
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Review of BMPV and 2-charge tube
• Setting Q3 = q1 = q2 = 0 leaves D1-D5 → kk tube. Gauge theory

description known (Lunin, Mathur) Have

JL = JR =
N1N2

n3
, R =

√
Q1Q2

q3

Corresponds to breaking up effective string into N1N2

n3
components of

length n3. Each component is in RR vacuum with JL = JR = 1.

• Setting R = 0 gives BMPV with

JL 6= 0, JR = 0, S = 2π
√

N1N2N3 − J2
L/4

After a coordinate transformation (spectral flow) near horizon geometry
becomes BTZ×S3 × T 4

(Cvetic, Larsen). Spectral flow invariant version of Cardy
formula gives entropy as

S = 2π

√

c

6
(L0 − 3J2

L/2c), c = 6N1N2

• Also recall that BMPV has a single component string (Maldacena, Susskind).
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Black ring entropy

• Natural to divide effective string into a tube part and a BMPV part:

πL tube2 πLBMPV2

2 πN1 N 2

Tube string BMPV string

• Tube string further breaks up into components of length ℓc, and carries
Jtube but no entropy. BMPV string carries JBMPV and all entropy.

• Ltube fixed by Ltube

ℓc
= Jtube. Would like to be able to predict ℓc.

• Entropy in this model takes BMPV form

S = 2π
√

LBMPVN3 − J2
BMPV

• Convenient to parameterize angular momenta as

Jtube =
N1N2

n3
− δ, JBMPV = −n3N3 + γ

which gives

Sring = 2π
√

n1n2n3δ − γ2
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• 1) δ = γ = 0 Take ℓc = n3, as for 2-charge tube. Then have

Ltube = N1N2 ⇒ LBMPV = N1N2 −N1N2 = n2
3N3

To account for JBMPV we fill up Fermi sea, which yields correct result

JBMPV = −
√
LBMPVN3 = −n3N3

• 2) δ 6= 0, γ = 0 Entropy is now nonzero

S = 2π
√
n1n2n3δ

Keeping ℓc = n3 yields wrong result. Correct result obtained from

ℓc =

(

1 +
N3

N3

δ

Jtube

)

n3

Might be able to test this via time delay expts.

• 3) δ 6= 0, γ 6= 0 After nontrivial cancellations, find that same formula for ℓc
as in (2) yields correct entropy. Now have additional zero entropy states
when γ2 = n1n2n3δ corresponding to filled Fermi sea.
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Near ring geometry
• In the UV (AdS boundary) we have the usual (4, 4) CFT with
cUV = 6N1N2.

• In the IR (near the ring) the dipole charges dominate, and we see the CFT
of the D1-D5-KK system with (4, 0) susy and cIR = 6n1n2n3.

• In betweeen have a highly nontrivial RG flow. Note cIR < cUV .

• In simplest case δ = γ = 0 define

ψ̃ = ψ − 1

q3
x+, φ̃ = φ+

1

q3
x+, x̃+ = q3ψ

to yield near ring

AdS3 × S3/Zn3
× T 4

with

ℓAdS = ℓS3 =
√

q1q2q23 , VT4 ∼
√

q1
q2

• Old angular coordinate becomes new coordinate parallel to AdS

• x̃+ compact and cycle shrinks to zero size: singular.
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Remarks

• Can we better understand the states in the UV CFT, and their RG
flow to the IR?

• Can we find geometries which cap off smoothly?

• Can we understand microscopic structure of other solutions, e.g.
noncircular rings?
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