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New results are presented on the Euclidean path-integral formulation for the partition function and
density of states pertinent to spherically symmetric black-hole systems in thermodynamic equilibrium.
We extend the path-integral construction of Halliwell and Louko which has already been used by one of
us (Louko and Whiting), and investigate further a lack of uniqueness in our previous formulation of the
microcanonical density of states and in the canonical partition function. In that work, the method
chosen for removing the ambiguity resulted in two specific path-integral contours having finite extent.
Physically motivated criteria exercised a dominant influence on that choice, as did the need to overcome
the unboundedness from below of the gravitational action. The new results presented here satisfy the
same physical criteria, but differ in ways which are physically significant. The unboundedness is not now
eliminated directly but, for positive temperatures only, it is dealt with by what may be viewed as the in-
troduction of an effective measure, which nevertheless may be of exponential order. Having chosen to
investigate alternative contours which, in fact, have infinite extent, we find that imposing the Wheeler-
DeWitt equation automatically selects out particular finite end points for the contours, at which the
singularity in the action is canceled. A further important outcome of this work is the emergence of a
variational principle for the black hole entropy, which has already proved useful at the level of a zero-
loop approximation to the coupling of a shell of quantum matter in equilibrium around a Schwarzschild
black hole (Horwitz and Whiting). In the course of enquiring into the nature of the variables in which
the path integral is constructed and evaluated, we were able to see how to give a unifying description of
several previous results in the literature. A concise review of these separate approaches forms an in-
tegral part of our new synthesis, relating their various underlying ideas on Hamilton-Jacobi theory and
Hamiltonian reduction in the context of path integration. The new insight we gain finally helps motivate
the choice of the integration variables, identification of which has played an important role in our whole
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I. INTRODUCTION

One of the most powerful tools for investigating the
quantum properties of any physical system, including one
in which there are self-gravitational interactions, is the
Feynman path integral. This is apparently the case
despite the general mathematical difficulty of determining
a well-defined procedure by which formally to construct
any particular path integral. Rather than preoccupation
with the question of resolving quite general issues, in this
paper we will concentrate on specific aspects of the non-
perturbative quantum treatment of a theory such as gen-
eral relativity. In handling the gravitational degrees of
freedom, apart from the details of choosing gauge condi-
tions (in response to the general covariance of the
theory), and in dealing with variables which have restrict-
ed physical ranges (certainly in connection with the sig-
nature of the metric), there have also arisen problems re-
lated to finding a specification of appropriate contours in
the course of constructing the actual path integral. An
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ever growing effort is being made to investigate and over-
come the ensuing subtleties, and in this paper we success-
fully contribute to that quest, by invoking the Wheeler-
DeWitt equation to govern the selection of specific con-
tours in the context of gravitational thermodynamics, but
in a way which may have implications also in the cosmo-
logical context.

Gravitational thermodynamics continues to be an area
of fruitful investigation partly because the thermodynam-
ics is so well understood, and partly because such simple
systems as (Lorentzian) static, spherically symmetric
black-hole spacetimes yield extremely interesting and
nontrivial thermodynamic results. Through a variety of
uniqueness theorems it has been established that, classi-
cally, black-hole spacetimes are entirely characterized by
a few degrees of freedom which, in a quantum physics
sense, appear to behave essentially like a (relativistic) par-
ticle system in several variables. While there remain an
infinity of graviton degrees of freedom associated with
the propagation of gravitational waves which might dis-
turb stationary black-hole configurations, the treatment
of these is not so dissimilar from that for waves of lower
spin in a curved geometry (in principle; though it is obvi-
ously more difficult and more complicated in practice,
and in a perturbative sense less satisfactory because of the
inherent nonrenormalizability of the theory). However,
there is still some residual ambiguity arising from the
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quantum treatment of even such restricted gravitational
systems as those in which these propagating degrees of
freedom are absent. In this paper we find a resolution of
that ambiguity which finally leads to a maximum princi-
ple for black-hole entropy, a result which has been re-
markably elusive throughout previous investigations of
that issue and the related question of the density of
black-hole quantum states.

Much of what we now know of the physics of simple
microscopic systems, after more than 60 years since the
introduction of quantum mechanics, has been obtained
by an interesting interplay between purely classical and
purely quantum ideas, and has led to the emergence of a
whole new area of semiclassical thinking and develop-
ment. The notion that a sufficiently large or sufficiently
energetic system should be dominated by essentially clas-
sical considerations (perhaps subject to quantum condi-
tions) has played a recurring role in this development, al-
though we now know of such phenomena as supercon-
ductivity, the quantum Hall effect, the Josephson junc-
tion, and heavy electron systems, for example, which are
determined by genuinely macroscopic quantum effects.
General relativity still represents a fairly new arena in
which the behavior, even of large systems, may yet be
determined by the principles of quantum physics.

Progress in gravitational thermodynamics has already
borne the fruits of an intricate interplay between classical
and quantum arguments and, as exemplified by the close
links drawn between these alternative avenues in the fol-
lowing section, it continues to do so. A striking example
of this early progress [1] led to the original realization
that there should be an outgoing flux of radiation at finite
temperature following gravitational collapse to a black
hole. Subsequent semiclassical discussion has relied on
there being some domain in which the equilibrium parti-
tion function for an eternal black hole is dominated by a
simple, locally minimal, classical Euclidean action [2]. It
has also been understood that the relevant system might
nevertheless undergo a “‘quantum” induced phase transi-
tion, when this extremum failed to be a global minimum.
Hamiltonian reduction has represented a convenient ave-
nue by which to get beyond a purely stationary point
analysis and comprehend this semiclassical result [3].
Most recently a combination of classical and quantum
criteria has been used to guide the selection of crucial in-
tegration contours in a path-integral formulation of the
partition function [4]. That work incorporated existing
results on local and global stability, and has led to a
specification for the density of states in the microcanoni-
cal ensemble, well outside the classical domain. One
salient feature of this density of states is that it was cut
off to zero above a certain energy, a property whose ex-
istence had been hinted at in previous work [5].

A. Overview

In this paper, we continue to consider a path-integral
construction of the quantum theory for an Einstein ac-
tion reduced to a finite number of degrees of freedom.
However, before proceeding to the specification of the
path integral in the context of black-hole thermodynam-

ics, we review an appropriate Hamilton-Jacobi formula-
tion and several different (Hamiltonian-)reduction
schemes for this constrained dynamical system. Our syn-
thesis brings out a number of relations between previous
results and thereby leads eventually to a new maximum
variational principle for gravitational entropy. Such an
outcome, which essentially had been lost in obtaining the
result of Ref. [4], does not depend for its existence on any
specific details of the path integration. Additionally, this
work partly motivates the choice of variables used previ-
ously in the path integral evaluation and provides sup-
port for the practical use of both classical and semiclassi-
cal results in gravitational physics.

Using essentially the same starting point for the formu-
lation of the path integral as in Ref. [4] but, after some
further investigation, by making a different choice for the
crucial integration contours, we have been able to satisfy
the previous physical criteria and yet arrive at a new
specification of the density of states, which is physically
distinct in that it remains nonzero to arbitrarily high en-
ergies. We show how both Hamilton-Jacobi analysis and
a specific non-Hamiltonian-reduction hypothesis lead to
essentially the same starting point (up to a simple mea-
sure), as is obtained by more elaborate path-integral
methods. In addition, by referring back to the traditional
difficulties associated with the quantization of gravitating
systems, we can throw new light on control of the un-
boundedness (from below) problem for the gravitational
action, a problem which actually arises here in a natural
way and is dealt with, by effectively being cut off, in a
very unusual and decisive manner. This result is ob-
tained essentially by invoking the Wheeler-DeWitt equa-
tion for the partition function while determining the
finite end point of a contour integral, which turns out to
be identical to the Laplace transform of the density of
states, which we subsequently identify. In this sense the
Laplace transform has been accommodated directly into
the path integral. From a consideration of the inverse
Laplace transform of our eventual result we are able, in
retrospect, to point to a fundamentally new zero-loop
variational principle in which the concomitant gravita-
tional entropy is globally maximized. Our new prescrip-
tion for the density of states in the microcanonical en-
semble remains nonzero at arbitrarily high energies, in
contrast with that found in Ref. [4], which became cut off
to zero above some finite maximum energy depending on
the thermodynamic boundary data.

To direct the reader’s attention to the results obtained
here and to their relation with other recent work, we
summarize the layout of the remainder of the paper, be-
fore proceeding. After a brief restatement of the ap-
propriate classical variational problem in Sec. II, and
then reviewing recent developments in the thermodynam-
ic context, we go on to reconsider details of Hamilton-
Jacobi solutions, especially in connection with the path-
integral formulation. We examine the relation between
several semiclassical treatments and identify the starting
point which is obtained directly from the path-integral
work of Halliwell and Louko [6]. In Sec. III, by investi-
gating the choice of contours available we find that the
unboundedness of the gravitational action can actually be
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controlled in a satisfactory way. Section IV contains a
brief discussion of various consequences of our investiga-
tion, including properties of the new density of states
which we obtain, the emergence of a zero-loop variation-
al principle in which the gravitational entropy is maxim-
ized, and implications for (using the Wheeler-DeWitt
equation to control) the generic unboundedness of the ac-
tion.

II. A UNIFYING PERSPECTIVE

It has been established that black holes have both an
entropy [7] and a temperature [1], both of which consti-
tute results in quantum physics, even if formulated in a
statistical or thermodynamic domain. Since their intro-
duction into the statistical and thermodynamic study of
gravitational systems [8,9], path-integral methods have
been productively employed, even in investigations exam-
ining the quantum properties of bounded systems con-
taining a black hole [3,4]. A recurrent problem plaguing
efforts in this area generally, but which was effectively ab-
sent in Refs. [3,4], concerns the unboundedness from
below of the gravitational action.

The work of Ref. [5] on the black-hole density of
states, even though only a zero-loop result, effectively
showed that this unboundedness might, after all, be con-
trolled for finite black-hole systems, since an intelligible
finite result was obtained, but it gave no hint of a method
by which that control might be exercised, in general. In
the following section we will find that the Wheeler-
DeWitt equation may have a role to play in determining
the circumstances of such control, and perhaps in a much
wider context than that considered here. In the mean-
time, in order to eventually see how this control may
come about, we must begin by obtaining a specification of
the canonical partition function governing the thermo-
dynamics of finite black-hole systems.

By following the Feynman prescription, the partition
function for the canonical ensemble can be given a formal
path-integral representation. In gravitational thermo-
dynamics, such a path integral would be evaluated over
Euclidean four-geometries on a manifold with the re-
quisite topology, and would take the form

Z(y)= [ Dlglexp(—I[g]) , (1)

in which the induced metric ¥ on the boundary is held
fixed, corresponding to the canonical thermal boundary
conditions of fixed inverse temperature, B, at walls of
fixed area A. For each problem in statistical mechanics
in which there arises such geometrically canonical data
there is, in fact, an associated well-posed boundary-value
problem in general relativity [10]. In particular, with no
matter present, all relevant thermodynamic data are
purely geometrical.

In principle, the path integral requires a sum over all
geometries obeying the prescribed boundary data. How-
ever, of technical necessity, in minisuperspace applica-
tions, this space of geometries has been reduced to the
smaller domain consisting only of static, spherically sym-
metric geometries, or, even further, to just those satisfy-
ing the Hamiltonian constraint, always on manifolds with

the requisite topology. In this way it has been shown
that, under conditions properly defining a suitable canon-
ical ensemble, a bounded black-hole system may exist in
stable thermal equilibrium [2]. To indicate the basis of
such an understanding and subsequently, for a more com-
plete investigation of the underlying path integral, we
turn now to a description of the classical Euclidean
theory of general relativity.

A. Classical variational principle'

In line with our intention to treat only the ‘“nonpro-
pagating” gravitational degrees of freedom, we will con-
centrate here on static, spherically symmetric geometries
and adopt the following form for the metric:

ds’=a*y)d?+N2y)dy2+bXy)dQ? , )

defined on manifolds having topology M =D XS?, and
thereby the Euler characteristic, y=2. The disk D is
mapped by the polar coordinates (y,7) with 0<y <1 and
7 has a period of 27. The metric of a unit two-sphere is
denoted by d Q2. We shall generally adopt units in which
G and # are 1. The manifolds we consider have a bound-
ary at y =1 with topology dM =S'XS2. The intrinsic
metric of the boundary is characterized by a(1) and b(1),
which have a thermodynamical interpretation as the in-
verse temperature of the wall, B=2ma (1), and its area,
A =4xb%(1). We are interested in constructing the par-
tition function for the canonical ensemble in which the
pair of data (B, A) are held fixed. The appropriate classi-
cal action is therefore the one which is stationary when
the field equations hold and the boundary metric is fixed.
Such an action is the modified Hilbert-Einstein action
[8,11]

1

1 —
I=——— [ RVgdix+— —KOyd?
—J g d’x 81Tf6M(K K°Wyd'x ,

(3)

where K is the trace of the extrinsic curvature of the
boundary and the constant K° is chosen to be the trace of
the extrinsic curvature of the boundary embedded in flat
Euclidean space. This choice is of some consequence
even for the classical theory, in which it determines the
reference level of energy, and will also affect the quantum
theory, though not the entropy to any order. For metrics
of the form (2) the action may be expressed as
ab'*+2ba’b’

Iz—ﬂ-fol N

+2ma(1)b(1)—7b?(0) , (4)

+aN |dy

where a prime denotes 3/8y, and y =0 physically locates
the black-hole horizon. In the course of extremizing the
action given by (4) we will be forced to deal with condi-
tions at the coordinate singularity at y =0. Accordingly,
we consider as part of our variational principle not only

ITreatment in this section parallels that in Ref. [4], and
sources cited therein.
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a(1)=8b(1)=0, (5)
but also [4]
a(0)=0, (6)

even though y =0 is not a boundary, but rather the
center of the manifold M. Upon variation of (4) while
respecting (5) and (6), we obtain

74
8= —8 + 28N+
wf 8N5N 6b8b dy
al
+27 | |[—=—1 |bbb . (7)
N l L=0
When the equations
SL_N [ 12 ] g
52 b’ N } ’ Nb°Gy=0, (8)
_§L_ ab12+2ba'bl _ . 2,~1_
SN N2 _ab GI—O y (9)
S | | taby |' bt | _ o
Sb N N aNG2 aNG3 0 N (10)
a' _
N 1 ) =0 1y
y=0

are satisfied, 6 =0. Equation (11) is the condition of reg-
ularity at the center, so that solutions to our classical
field equations are Euclidean Schwarzschild black holes,
with merely a coordinate singularity at y =0 in our
chosen form of the metric.

B. Hamiltonian reduction®

One of the characteristic properties of general relativi-
ty is that, through it, the energy in a spacelike hypersur-
face can be evaluated by a surface integral. Consequent-
ly, in a static geometry such as we are considering, when
the Hamiltonian constraint is satisfied, up to topological
contributions the action is given entirely by a boundary
term. The dynamical Hamiltonian H, is proportional to
the G component of the Einstein tensor (8). For smooth
geometries, as dealt with in Ref. [3], its solution is given
by

172
M: __2_ 12)
N(y) b(y) ’ (

where 7, which physically determines the black-hole
horizon area (by A4 =417r2+ ), will be used throughout in
place of b(0). The reduced action, obtained by substitut-
ing this solution of the Hamiltonian constraint into (4), is
given by

172
r+

=1l 50_,=Bro {1— 11—— -y, (13

Iy

2A more complete analysis can be found in Ref. [3].

in which ro=b(1). This action is exact for smooth, stat-
ic, spherically symmetric Euclidean geometries which,
however, are generally not classical solutions to the full
vacuum Einstein equations, except possibly at stationary
points with respect to r variations.

For the purposes of defining a path integral, we can im-
agine the path measure to be chosen so that the con-
straint (8) is enforced through &-function conditions at
each point. With reference to the smooth geometries
presently under discussion, the path integral should then
become simply an ordinary integral in r,, for example

(3],
*(B,A)= fo *ulr . Jexpl

but evaluation of the residual “effective” measure u(r ),
arising from very irregular geometries in the neighbor-
hood of each smooth geometry for which we have evalu-
ated the action in (13), must now be obtained by an in-
dependent argument. Such an argument was given in
Ref. [3], which allowed a specification of the partition
function to be completed. Even without this result, the
Wheeler-DeWitt equation was satisfied to leading order.
Moreover, whenever classical stationary points dominate
the path integral, the properties of the resulting partition
function depend principally on an analysis of
I*(B,re;r4 ) and not on details of the adopted measure.
In particular, for B/ry <32 /27, the global minimum of
the action with respect to variations in r , corresponds to
a Schwarzschild black-hole solution (as well as to an
infinity of nonvacuum geometries with the same value of
the action), and it uniquely determines the zero-loop free
energy of a thermodynamically stable equilibrium state in
the canonical ensemble with the given boundary data.
For larger B/r,, the path integral is dominated by non-
classical geometries, despite the existence of classical sta-
tionary points whenever B/r,<8w/v'27. In fact, two
real Euclidean solutions to the full vacuum equations
occur for all data in this range [2].

—I*(B,ro;ry)]dr, , (14)

C. Hamilton-Jacobi solutions®

Hamilton-Jacobi analysis played an important part in
the original development of a quantum-mechanical un-
derstanding of microscopic systems. Analogously, for
macroscopic black-hole systems, we have found that
there is a subtle and rather interesting relationship be-
tween the reduced action (13) and a solution to the
Hamilton-Jacobi equation associated with the classical
action (4). It will be seen from the form of the action (4),
that the Euclidean geometries corresponding to static,
spherically symmetric systems in thermal equilibrium
most naturally foliate in a radial direction. It is with
respect to this foliation that we are interested in applying
the Hamilton-Jacobi method. Because its solution will
also bear on the form in which we eventually consider the
path integral, and on the action arising from an alterna-

3This same problem arose in a physically unrelated cosmologi-
cal context; see Ref. [12].
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tive method of reduction which we investigate in the next
section, we will briefly summarize the relevant
Hamilton-Jacobi results.

To simplify the analysis we rewrite the implied La-
grangian in (4) by replacing the variable @ with a new
variable, ¢ =a’b, and we consider just that part of the ac-
tion which is without the additive constants:

b 172 ’b' 172

=—x['||2] L2+ |4| N|d

w 7Tfo " N + b J ly
=f01(qu’+Pbb’—Nh)dy . (15)

The second line follows from defining momenta in the
usual way, P, =dL /dx’; and the natural Hamiltonian as-
sociated with this problem, in which the parameter y
plays the role of “time,” is given by Hy = Nh, where
172
PP
9 y Zab (16)

h=—m —1

b 172

There is also a constraint Py=0. The Hamilton-Jacobi
equation is obtained by replacing P, by dW /9x, and set-
ting

o 2 W

=0. 17
3q  3b 0 amn

Hy

Solutions which relate to the reduced action of the previ-

ous section can be obtained by the method of separation

of variables in the form W=Q(q)B(b)+C. Such a solu-

tion is

W=27[BQ—V'b(1)—b(0)+B%/cV q(1)—q(0)+cQ?],
(18)

where B and Q are constants of integration and c is the
separation constant. (c¢ could, of course, be scaled away;
but that is of no real consequence here.) For geometries
satisfying (6) with our chosen boundary data, W is maxi-
mal in ¢, for example, with a value which leads directly to
the reduced action (13).

It is also clear that solutions may readily be obtained
by the method of separation of variables in the alternative
form W =Q(q)+ B (b), which is much closer to the form
traditionally used in solving classical problems, and for
establishing a relationship between classical and quantum
physics. A solution in this form is given by

=:a—1r[q(1)—q(0)]—1ra[b(1)—b(0)] , (19)

where a is the separation constant. (An identical solution
occurs when the lapse rescaling of Ref. [6] is adopted.)
Imposing (6) and reintroducing the additive constants
leads directly to the reduced action we obtain in the next
section. We shall also see that, subject to an appropriate
definition of the lapse, this is exactly the action which
arose in the path integral of Ref. [4]. Finally, we note
that the action obtained by reduction using the dynami-
cal Hamiltonian in the previous section again results, as
an envelope solution, when (19) is evaluated at its station-
ary point with respect to a.

D. Alternative reduction

Whereas the constraint imposed in Ref. [3] correspond-
ed to the dynamical Hamiltonian Hj, of a timelike folia-
tion, it seems reasonable to investigate the consequences
if, instead, the domain of the path integral were to be re-
duced by imposing the Hamiltonian constraint associated
with the natural foliation, i.e., the Hy which generated
the Hamilton-Jacobi solutions, and which is proportional
to G. The equation G} =0 cannot be solved directly, al-
though it could be substituted back into the action before
proceeding. Reduction by this method will be considered
elsewhere [13].

Here we will consider, as an alternative approach,
reduction by the “constraint,” Gg —G} =0, which is
known to be solvable; in fact, it frequently is used to set
g% '"'=1 for static spherically symmetric geometries.
Perhaps the strongest motivation for using this alterna-
tive condition comes after the fact, from the emergence
of results which relate to our Hamilton-Jacobi discussion.
By an appropriate identification of variables, and up to a
simple measure term, this reduced action was encoun-
tered in the path integral of Ref. [4], once the canonical
path integral had been reduced to an ordinary double in-
tegral over two remaining parameters. Geometrically
one of these parameters still corresponds to the location
of the event horizon, r  , while the other, already denoted
by a, apparently corresponds to the inverse Hawking
temperature (via the surface gravity), and arose as the
separation constant in the Hamilton-Jacobi problem.

In terms of the new variable, a(y)=Na/b’, and the
variable g, we may recast (4) into the form

I=-nf’ dy +2ma (1)b(1)—mb (0 .

qu’—+ab'
a

(20)

Furthermore, from (8) and (9), we see that the equation,
G3—G! =0, may be written as

’

a =0, 21)

GS—G} =2ﬁ

1
a

which has the solution a =const, a constant equivalent to
the separation constant in the Hamilton-Jacobi solution.
When condition (21) is satisfied, we immediately obtain

Igo_g1—o=— 2 1a(1)=g(0)]—malb(1)=b(0)]

+2ma (1)b(1)—mwb*0)

= ___—77- —walry—r, )+Br0—1rri ,

(22)

where use of (6) has been made in the last step. In this
case, the path integral is reduced to a double integral

Z (B, A= [plry,a)exp[—1(B, A,ry,a)ldr da, (23)

with some appropriate measure fi(r,,a). Precisely this
result, for
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a(r,a)=ulry)/a, (24)

was obtained in Ref. [4], and we now turn to a considera-
tion of that work.

E. Characterizing the partition function*

The partition function of Ref. [4] was obtained from a
path integral evaluated according to a prescription of
Ref. [6]. In the course of constructing that path integral
it had been found necessary to formulate it in terms of a
rescaled lapse given by

N=aN . (25)

With a path measure defined in terms of b, g, and N at
each point, the bulk of the path integral could then be
evaluated by Gaussian integration in the variables b and
qg. There remained the lapse integration which, in the
“proper-time” gauge, reduced to a single ordinary in-
tegral in N, but the contour for this integral had not been
predetermined merely by the formulation. Results for
several choices of the lapse contour were tabulated in
Ref. [6], but none of them included integration along the
positive real axis because the integral was divergent at
both ends of that contour, a consequence of the gravita-
tional action being unbounded from below.

It will be convenient to turn our remaining discussion
of this analysis into a form suitable for reference in Sec.
[II. Thus, before performing the final N integration, we
combine the intermediate result of Ref. [6] with the addi-
tional integral over b (0)( =r ) required to complete the
specification of a partition function. This leads us to
consider the “action” which can be expressed in our vari-
ables as

I= :N?[qm—qm)][b(n—b(m]

— 7N +27a(1)b(1)—7b*0) . (26)

We note that there actually exist four-geometries, de-
pending on the boundary data (1) and g (1) and on the
additional parameters N and b (0), for which the action is
exactly that given in (26). Because the resultant lapse
measure, dN /N, appearing in Ref. [6] is scale invariant,
integration in the lapse can immediately be related to an
integral involving the reduced action of the previous sec-
tion with a lapse reparameterized in terms of the variable
a by

a=4 (1 )tq (0)

N

(or, equally, by a=N/[b(1)—b(0)]; cf. previous sec-
tion). Given the table of results in Ref. [6], the task faced
in Ref. [4] was to select contours corresponding to the a
and r, integrals so that a quantity might be obtained
having the properties appropriate to a partition function
for the canonical ensemble presently under discussion, for
which the relevant stationary points should always be on
the positive real axis. These properties include the re-
quirement that, when it is dominated by a stationary

(27

40ur discussion rests heavily on that in Ref. [4], using results
from Ref. [6].

point of the action, that point should be at least a local
minimum. In addition, there should be no other classical
solution with the given boundary data for which the
value of the action is less. Every partition function
should also have the form of a Laplace transform related
to the variable B, and in the present situation must satisfy
the Wheeler-DeWitt equation, as any path integral
should do.

There is a local minimum in the reduced action (13)
only for B/ry<8m/V'27, and at this local minimum 7
satisfies: 2r,/3<r, <ry. The determinant of the Hes-
sian of I at the stationary point with respect to a and r
variations is negative for data leading to r, in this range,
indicating that one of the a and r, contours must be
purely imaginary at the physically relevant stationary
point. Only one lapse contour in the table of Ref. [6]
passed through the positive stationary point, and it was a
closed contour around the origin which crossed the real
axis in the imaginary direction. Thus the 7, integral was
required to be real, but it would diverge unless cut off at a
finite point. That point could depend on the data, but
only in a certain way if the partition function was to
satisfy the Wheeler-DeWitt equation.

In the variables we have adopted, the Wheeler-DeWitt
equation takes the form

1/2[

where account has been taken of the shift in the canoni-
cal momenta caused by the K° term in the action. It can
be directly verified that the limits zero and r,, chosen for
the r integration in Refs. [3,4], allow the partition func-
tion, based on the reduced action (26) modified by (27), to
satisfy the Wheeler-DeWitt equation exactly, provided
the “‘effective” measure p can be found independent of
the data (i.e., B,ry), as indicated in (24) and analogous to
(14). A key feature of the density of states deduced from
this formulation of the partition function is that it was
nonzero only for E in the range 0<E <2r;y. The parti-
tion function itself was found to be dominated by a classi-
cal solution only when it arises for a minimum of the ac-
tion which is negative, consistent with the result previ-
ously obtained in Refs. [2,3]. Somewhat incomprehensi-
bly, the finite support of the ensuing density of states
meant that quantum states of the gravitational field could
be defined with arbitrarily negative temperature, a curios-
ity which had already emerged in the discussion of Ref.
[5], but still with no prescription for how to prepare such
states.

172
9
b

1
T

172

+7*1lZ =0, (28)

III. INVESTIGATING THE PATH INTEGRAL

Using the path-integral “action” (26) obtained in the
previous section, and expressing it in terms of our new
variables and our chosen boundary data, we find that the
definition of the partition function adopted in Ref. [4] can
be rewritten as
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1 da 32"0
Z(B,ro)——zgf:-fy(r+)dr+exp —Bro+4—+malro—ry)+mrk |, (29)

in which, previously [4], the a integral was carried out
along a closed loop about the origin (resulting in a zeroth
order, modified Bessel function) and »_, was integrated
from zero to r,. With these prescribed contours, the in-
tegrals can be evaluated in either order. For concrete-
ness, in this section, we will make the specific choice
w(r )=2m in Planck units, before proceeding.

We have examined alternative choices for the contours
guided, as previously, by the requirement that the parti-
tion function be a Laplace transform which satisfies the
appropriate Wheeler-DeWitt equation and that, in the
classical regime, it should be dominated by a thermo-
dynamically stable black-hole solution. In particular, we
have investigated using the entire imaginary axis for the
r, integration, and the positive real axis for the a in-
tegration, a choice which preserves the relative properties
of the contours which were identified as essential in the
previous section. In general, some modification of this

|

1 reoda pas2+io Br
Z(B,ro)z—i—f ——fra ! dr . exp [—Br0+—:+1ra(r0—r+)+rrrﬂ

0 «a 41

1——

=1 r~da ST
2f0 o erfc[ \/mxro Py

It may appear that the a integral must be evaluated last
in this expression for Z (B,r,), but such is not the case, as
is shown by the subsequent expression in (33) below,
which may be obtained from (31) by a change of integra-
tion variable.

From Ref. [14] we can see that, as a— «, erfc—2 and
the integral in (31) is clearly well behaved there. This
same asymptotic limit applies for large classical systems,
which occupy stationary points of the exponent. Fur-
thermore, as a—0 for any finite positive 3,

172
exp

2

Br
+Bro— 4m° —mary |, (32)

0

2
erfc— —
B

which cancels the singularity in the exponential and also

exp

r

choice is necessary in order to deal with the singularity in
the exponential at @=0. From among a number of op-
tions considered, we believe that shifting the . contour
to the right and cutting it off from below at a particular
point represents the most acceptable resolution available.
The cutoff point is chosen so that the Wheeler-DeWitt
equation will be satisfied while nevertheless ensuring that
the required classical solution should dominate, at least
for positive 8. With the choice we make, it has also been
possible to determine that, just for B positive, there will
be no residual singularity in the exponential at a=0.

The appropriate point at which to cut off the r in-
tegral is found to be

a . B
rc=?—l\/ar0 —m] . (30)
Our result is then [14]
B2r0 ral
—_ + _——
Bry ira +mar, n . (31)

causes the singular measure to become integrable. This
latter asymptotic limit would diverge at =0, consistent
with the fact that (31) is not well defined at that point. It
is clear that this Z does not exist for S <0, a data range
which is available to the partition function of Ref. [4].
Thus, our new choice for the integration contours does
not completely remove the singularity in the action,
which can still be seen in (31), and (33) below, for nega-
tive B, but does so only for B positive. Hence, the
Wheeler-DeWitt equation has helped us to separate the
physically reasonable domain (8> 0) from the problemat-
ical domain (B8<0), for which it has remained difficult to
establish an entirely satisfactory physical interpretation,
or even a prescription for the preparation of an appropri-
ate state of the gravitational field, corresponding to
boundary data from this domain.

A. Density of states

Rather than attempting to derive our proposed density of states from the partition function obtained in the previous
section, we instead give an alternative expression for this partition function, from which the density of states can be
read off directly. Thus, by performing the E integration first (which is valid for all 8> 0) in®

2 2
dg_ exp 21TaE-—1raE——m——BE , (33)

Viar, o 4

Z(B,ro)= [ “dE I

SIntegral (33) comes from the first line of (31) by the substitution 7, = re+HiEVa/rg.
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we obtain the result (31), indicating immediately that we
can write (for E >0)

« da E?  7wa®
v(E,ry)= ——exp |2maE —ma— ———
o gt 2
1/4 -
=21 p L (—VErMexp(2rM?) (34)

\/"o

for the density of states, where M =E (1—E /2rg), and D
is a parabolic cylinder function [15]. This result for v is
elementary to confirm, because of the way B enters into
(33), which allows us to do the inverse Laplace transform
trivially to obtain the first line of (34).

For M large and positive (i.e., for 0 <E <2r;) we have
the asymptotic result

47GM? ]

V(E,r0)~ l %

1/2
P

0<E<2ry/G (35

in which the physical constants have been inserted to
show the dependence on G and #, in particular, the disap-
pearance of v as G —0. This result is determined, almost
exclusively, by contributions in a at the scale

ay=4GM =4GE (1—GE /2r,) <2r, ,

0<E<2ry/G, (36)

as is appropriate with classically dominant solutions. For
fixed r,, v attains its maximum at E =r; (where
M =r,/2), beyond which it decreases, eventually to zero
as E— co.

For M large and negative (i.e., for E >>2r;) we have al-
ternatively

172
1

E(1—2ry/GE)'? "’

G
—2Mr,

'V(E,r0>~

E>2ry/G, (37)

which (amazingly) is independent of physical constants to
leading order, and its form confirms why the partition
function does not exist for §=0. Integration by parts
shows that the density of states at very high energy is
effectively dominated by contributions in the integral
characterized by (but not precisely limited to) the scale

__h fir # #G
= = << << R
47|M|  2wrGE*1—2r,/GE)  4wE  8ur,

2%}

E>>2r,/G, (38)

which would be generally microscopic, even on the
Planck scale of length, for any physically reasonable sys-

tem. It is interesting to note the different dependence on
physical constants in the length scales, (36) and (38),
which characterize the behavior as r, is varied from
larger to smaller values at fixed E.

These asymptotic results hold within 1%, for
M >1.22mp, i.e., above the Planck scale, while at M =0
exactly we have

w0,r0)=c/V'rq , (39)

where ¢ ~1.9256 in Planck units. Although the expres-
sion in (34) is well defined for E <0, this domain does not
contribute to the density of states, as taking the inverse
Laplace transform of (33) makes clear.

B. Controlling unboundedness
in the gravitational action

The problem of the unboundedness (from below) of the
Euclidean action for general relativity has long been
recognized as a genuine, serious problem. Fortuitously, it
does not appear for perturbations away from flat space
provided the Hamiltonian constraints are imposed on the
spacelike surfaces of a chosen foliation; and equally, it
did not arise in Ref. [3], essentially for the same reason.
But cosmological examples exist for which imposing the
constraints will not remove this problem. In this present
work the unboundedness problem is explicitly present, in
general, but our choice of contours manages to control it,
for positive 3 only, in a very effective manner. In essence,
the r, integral can be viewed as modifying the ‘“mea-
sure” for the a integral, and in a exponential way near
the singularity, as is shown in (32). Equally, with its
asymptotic behavior at large negative argument removed
from the parabolic cylinder function in (34), the partition
function written as a Laplace transform can be viewed as
containing an effective measure which is constant in the
classical regime, but is exponentially suppressed for large
energies. It is interesting to note that modified measures
of this kind were deliberately excluded from considera-
tion in the path integral of reference [4].

Our result does not introduce any additional cutoff pa-
rameter, in the usual sense. Also, it has been obtained
without requiring any specific renormalization, and it
satisfies the Wheeler-DeWitt equation exactly. As such,
it provides almost a model solution to a perennial prob-
lem. In particular, it does not simply circumvent the is-
sue, but puts it to good physical use—in terms of identi-
fying the range of applicable boundary data. This close
interplay between equation, boundary data, and solution
is a common occurrence throughout both classical and
quantum physics, and in the gravitational context is al-
most certainly at the heart of a permanent control of the
unboundedness of the action from below. In this sense,
our work indicates a new direction to pursue in order to
ensure that the gravitational action may remain well
behaved, even in fully quantized systems.

C. Variational principle for gravitational entropy

A global maximal principle for the zero-loop entropy is
really already contained in the Hamilton-Jacobi analysis
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of the previous section, but it can be read off most direct-
ly from the density of states in (34):
2 2
S(E,ry;a)=2maE —'7'ra£———ﬂ . (40)
ro 4

It is a result of some practical importance since, by itself,
it already suggests that the gravitational microcanonical
ensemble is well defined for all classically admissible data
[4] (i.e., E and ry such that M >0), a result which is
indeed borne out by (34) for the actual density of states.
An application of this zero-loop result to shells of spheri-
cally symmetric vacuum is currently under investigation
[16].

For data in the classical range this entropy is extrem-
ized at a=4M, and becomes the usual black-hole entro-
py, S =47M XE, ro), in which M is identified as the mass
of the system at infinity. For data outside this range (i.e.,
for E >>2r), this entropy is maximal (but not extremal)
at a=0, reflecting the fact that the dominant geometries
are of a quantum nature. The implication is that, at high
energies, states exist for which collapse does not occur
despite the fact that energy is confined to a region smaller
than the classical horizon. One could be reminded here
of the situation for the hydrogen atom, which is classical-
ly unstable to collapse; but quantum mechanically it is
stable. For the relevant thermodynamic data, M is actu-
ally negative, and S attains a global maximum at negative
a, suggestively indicative of a naked singularity. For-
tunately, this maximum does not contribute to the densi-
ty of states, which it would cause to diverge as E ap-
proaches infinity. Instead v actually dies smoothly, ac-
cording to the inverse power-law behavior given in (37).

IV. DISCUSSION

We began in this paper to formulate a unified perspec-
tive on recent work in the field of gravitational thermo-
dynamics as it applies to bounded spherically symmetric
systems containing a black hole. Our synthesis, which
represents an important part of the present work, is
presented in Sec. II. Recurrent throughout this approach
has been the reduction of the path integral for the ap-
propriate minisuperspace to one ordinary double (or sin-
gle) integral; by restricting to geometries satisfying the
dynamical or natural Hamiltonian constraint equations,
by examining solutions of the associated Hamilton-Jacobi
equation, and finally by detailed computation of an expli-
cit path integral—though with some remaining contour
freedom. Semiclassical methods have been shown to pro-
vide a powerful, if slightly incomplete, way of analyzing
problems of this kind, and have previously been used im-
plicitly, both in the selection of a functional measure [3],
and in settling the choice of contours left over from the
path-integral formulation [4]. Remarkably, we can ob-
tain a new maximum principle for black-hole entropy.
No variational principle has previously been available for
the black-hole entropy, and its existence now has already
proved useful in independent work on the stability of a
spherical shell of matter surrounding a black hole in a
state of thermal equilibrium [16].

With the reduced path integral in hand, we were able

in Sec. III to obtain some important new results. In or-
der to proceed there, our first undertaking required us to
reexamine the discussion of the available choice for the
remaining contours. We eventually chose contours
which gave a partition function having all the desirable
properties expounded in Ref. [4] but which is neverthe-
less different from the result found there. Our partition
function satisfies the Wheeler-DeWitt equation and obeys
essentially the same global stability criterion as previous-
ly demanded. And, for positive 8 only, it also solves the
problem of including contributions from geometries for
which the action is unbounded negative. These contribu-
tions represent a well established problem in general rela-
tivity which we have managed to control, obtaining a
finite result for all S> 0, by integrating on complex con-
tours with a carefully defined cutoff. The nature of this
control may prove significant for other work in quantum
gravity, since its formulation does not depend directly on
the thermodynamical context in which it is here formu-
lated.

The density of states we obtain has the notable proper-
ty that it is nonzero for all positive values of energy,
whereas the density of states of Ref. [4] is zero outside
the restricted range of energy, O <E <2r,. Having the
density of states be nonzero for large values of the energy
suggests the existence of quantum states of the gravita-
tional field which contain more energy than is required
for classical collapse. They would certainly not remain
stationary if allowed to evolve under the classical Ein-
stein equations but, however apparently unlikely, these
geometries nevertheless contribute to the black-hole den-
sity of states. The 1/E falloff rate of our result for these
quantum configurations prevents the existence of black-
hole equilibrium states at any negative temperature, in
sharp contrast to the consequences of the compact sup-
port in energy found for the density of states in Ref. [4].

In the present work we have invoked the Wheeler-
DeWitt equation to resolve ambiguities in a path-integral
construction for gravitational thermodynamics. The
work in Refs. [3,4], together with this work, represent
three different approaches to a single problem, which re-
quires dealing with the gravitational action and its intrin-
sic unboundedness from below. Our present approach
could be shown to be more head-on than previously, in
the sense that it does not simply avoid the issue at the
outset. For almost any other choice of r., (31) would
contain a divergent integral, and the particular value we
obtain for 7, resulted from imposing the Wheeler-DeWitt
equation directly and not from a priori elimination of the
singular behavior. This resolution also has the conse-
quence of being effective only for the more physically in-
teresting domain of positive S, thereby eliminating the
need to discuss the somewhat problematical question of
how to prepare states of the gravitational field at negative
temperature.

In relation to the broader context of quantum gravity,
it is significant that what we have essentially demonstrat-
ed here is a new method for controlling the unbounded-
ness of the gravitational action. The Wheeler-DeWitt
equation has not previously been used for this purpose,
and it remains to be further investigated whether,
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through it, we may eventually construct a generalizable
method for such control. The nature of our result cer-
tainly does not preclude this. With reference to canoni-
cal and other formalisms, it is precisely because they are
so formal that some problems are not easily seen until
one makes the context euntirely explicit; and equally, some
problems may not be circumvented until the context is
much more clearly and less formally defined. We view

our work as a direct contribution to the general problem,
especially valuable because it is very definitely an exam-
ple, which is both simple and explicit.
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