1. Find the electric field a distant z above the center of a square loop.

2. In some region, the electric field is found to be $\vec{E} = kr^3 \hat{r}$ in spherical coordinates (k is a constant).

 (a) Find the charge density $\rho(\vec{r})$.

 (b) Find the total charge contained in a sphere of radius R, centered at the origin (Do it in two different ways).

3. A thick spherical shell carries charge density $\rho(\vec{r}) = \frac{A}{r^3} (r_1 \leq r \leq r_2)$.

 Find the electric field in the three regions (1) $r < r_1$ (2) $r_1 < r < r_2$ and (3) $r > r_2$.

4. Find the potential a distance s from an infinitely long straight wire that carries a uniform line charge λ. Compute the gradient of the potential and check that it yields the correct \vec{E} field, sketch the potential.

5. Find the energy stored in a uniformly charged solid sphere of radius R and charge Q. Do it three different ways. (i.e. use Eqs. 2.43, 2.45, and 2.44)

7. Find the capacitance per unit length of two coaxial metal cylindrical tubes, of radius \(R_1 \) and \(R_2 \) \((R_2 > R_1)\).

8. The electric field of some configuration is given by the expression,

\[
V(\vec{r}) = A \frac{e^{-\lambda r}}{r},
\]

where \(\lambda \) and \(A \) are constants. Find the electric field and charge density.

9. A spherical charge distribution is given by:

\[
\rho = \rho_o \left(1 - \frac{r^2}{a^2}\right) \quad r \leq a
\]

\[
\rho = 0 \quad \quad r > a
\]

(a) Calculate the total charge \(Q \) on the sphere.
(b) Find the electric field and potential for \(r > a \).
(c) Find the electric field and potential for \(r \leq a \).
(d) For what value of \(r \) is \(E \) maximized?