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Institut d’Astrophysique de Paris Paris

Gravity: Newtonian, post-Newtonian, Relativistic
Exercises

Newtonian Gravity

1. In post-Newtonian theory, there appears a “superpotential” X defined by

X(t,x) = G

∫
ρ(t,x′)|x− x′|d3x′ .

Show that ∇2X = 2U , and that

∂2

∂t2
X(t,x) = −G

∫
ρ′
dv′

dt
· (x− x′)
|x− x′|

d3x′

+G

∫
ρ′

|x− x′|

{
v′

2 − [v′ · (x− x′)]2

|x− x′|2

}
d3x′ .

2. Use the spherical-harmonic expansion of |x− x′|−1 to verify that

U(t, r) =
Gm(t, r)

r
+ 4πG

∫ R

r

ρ(t, r′)r′dr′

for a spherical matter distribution.

3. Show explicitly that ∂jknpr
−1 = 105n〈jknp〉/r5. Find n〈jknpq〉 by explicit con-

struction.

4. Verify that the general N -body equation of motion for bodies with arbitrary
multipole moments,

ajA = G
∑
B 6=A

{
−mB

r2
AB

njAB +
∞∑
`=2

1

`!

[
(−1)`I

〈L〉
B +

mB

mA

I
〈L〉
A

]
∂AjL

(
1

rAB

)

+
1

mA

∞∑
`=2

∞∑
`′=2

(−1)`
′

`!`′!
I
〈L〉
A I

〈L′〉
B ∂AjLL′

(
1

rAB

)}
,

satisfies
∑

AmAaA = 0.

5. Suppose that the solar system is filled with a uniform distribution of dark matter
with constant mass density ρ. Taking this distribution into account, calculate
the modified gravitational potential of the Sun, and find the perturbing force
f acting on a planetary orbit. Find the relation between orbital period P and
semi-major axis a for a circular orbit, and calculate the secular changes in the
planet’s orbital elements. Place a bound on ρ using suitable solar-system data.
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6. A test body of mass µ orbits a body of mass m, radius R, and dimensionless
quadrupole moment J2 relative to a symmetry axis e; all other J`’s are assumed
to vanish. Prove that the following quantities are constants of the orbital mo-
tion:

(a) The total energy, given by

E =
1

2
µv2 − Gµm

r
+

1

2

GµmJ2R
2

r3

[
3(n · e)2 − 1

]
.

(b) The angular momentum along e, given by Le = µh · e, where h := r × v.

(c) A third quantity, constant to first order in J2, given by

C = h2 − J2R
2

[
(e · v)2 − 2

Gm

r
(e · n)2

]
,

where n := r/r. This third constant is analogous to the “Carter constant”
in the Kerr geometry of a rotating black hole.

7. Consider a spherical body on an inclined, circular orbit about an axisymmetric
body of radius R and even multipole moments J`, with ` = 2, 4, 6, and so
on. To first order in perturbation theory, calculate the secular changes in the
relevant orbital elements. In particular, show that:

(a) the inclination is constant, that is, ∆ι = 0;

(b) the line of nodes changes by an amount

∆Ω = −3π cos ι
∞∑
`=2

J`

(
R

p

)`
C`,

where C2 = 1, C4 = −5
2
(1− 7

4
sin2 ι), and C6 = 35

8
(1− 9

2
sin2 ι+ 33

8
sin4 ι).

8. From the equations for ∆e, ∆ω and ∆ι in the Kozai mechanism,

〈∆e〉 =
15π

2

m3

m

(
a

R

)3

e(1− e2)1/2 sin2 ι sinω cosω ,

〈∆ω〉 =
3π

2

m3

m

(
a

R

)3

(1− e2)−1/2
[
5 cos2 ι sin2 ω + (1− e2)(5 cos2 ω − 3)

]
,

〈∆ι〉 = −15π

2

m3

m

(
a

R

)3

e2(1− e2)−1/2 sin ι cos ι sinω cosω ,

show that

e2 cos2 ω sin2 ι− 3

5
e2 + cos2 ι = constant .

9. Advanced problem. Consider a point at a position r̄(t) on a circular orbit of
radius r around a central body of mass m, orbiting with angular velocity Ω,
with Ω2 = Gm/r3. Consider also a test body moving on nearby orbit, at a
position δr̄(t) relative to the point on the circular orbit. Assume that δr � r.
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(a) In a coordinate system that rotates around the central body with angular
velocity Ω, show that the equations of motion of the test body are given
by

d2

dt2
δr + 2Ω× d

dt
δr = Ω2

[
3(n · δr)n− (ez · δr)ez

]
to first order in δr; here Ω := Ωez is the angular-velocity vector, and
n := r/r.

(b) Prove that the general solution to the equations of motion takes the form
of the linear superposition δr = c1δr1 + c2δr2 + c3δr3 + c4δr4, where cn
are arbitrary constants, and

δr1 = cos(Ωt− χ1)n− 2 sin(Ωt− χ1)λ,

δr2 = n− 3

2
Ωtλ,

δr3 = λ,

δr4 = cos(Ωt− χ4) ez

are the four eigenmodes of the perturbed orbit; χn are arbitrary phases.

(c) Describe the motion that corresponds to each mode, and show that each
mode is generated by a perturbation in the orbital elements (p, e, ι,Ω)
relative to the unperturbed, circular orbit. Relate the constants cn to the
variations of the orbital elements.

(d) Find a solution with c2 = c3 = 0, but with c1 6= 0 and c4 6= 0, describing a
relative orbit that is circular, with a constant radius δr. What is the angle
between the plane of the relative orbit and that of the original, unperturbed
orbit?

(e) Now find a solution describing three satellites that are moving on the same
circular relative orbit, such that initially they are placed at the vertices of
an equilateral triangle. Show that as each satellite follows its orbit, the
constellation maintains the shape of an equilateral triangle. This config-
uration was adopted for the three satellites making up the Laser Interfer-
ometer Space Antenna (LISA), a proposed space-based gravitational-wave
detector.

Post-Minkowskian theory: Formulation

1. Show that gαβ =
√
−g gαβ, where gαβ is the matrix inverse to gαβ, and g =

det[gαβ] = g. If we define gαβ := ηαβ − hαβ, and hαβ is of order G, show that

(−g) = 1− h+
1

2
h2 − 1

2
hµνhµν +O(G3) ,

gαβ = ηαβ + hαβ −
1

2
hηαβ + hαµh

µ
β −

1

2
hhαβ

+

(
1

8
h2 − 1

4
hµνhµν

)
ηαβ +O(G3) ,

where indices on hαβ are lowered and contracted with the Minkowski metric.
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2. Consider the Schwarzschild metric in harmonic coordinates, given by

g00 = −1−R/2rh

1 +R/2rh

,

gjk =

(
1 +R/2rh

1−R/2rh

)
njnk +

(
1 +R/2rh

)2(
δjk − njnk

)
,

where nj := xj/rh is a radial unit vector, whose index is lowered with the
Euclidean metric δjk, so that nj := δjkn

k. Show explicitly that

g00 = −(1 +R/2r)3

1−R/2r
,

gjk = δjk −
(
R

2r

)2

njnk ,

where R := 2GM/c2, and verify that the harmonic gauge condition ∂βg
αβ = 0

is satisfied.

3. Consider the potentials hαβ for a stationary source (∂0h
αβ = 0), in harmonic

gauge. Recalling Einstein’s equations in the Landau-Lifshitz form:

∂µνH
αµβν =

16πG

c4
(−g)

(
Tαβ + tαβLL

)
,

along with the definitions Hαµβν = gαβgµν − gανgβµ, show that the conserved
quantities M and P j for the spacetime can be written in terms of the following
surface integrals at infinity:

M = − c2

16πG

∮
∞
r2∂h

00

∂r
dΩ ,

P j = − c3

16πG

∮
∞
r2∂h

0j

∂r
dΩ ,

where dΩ = sin θ dθdφ is the element of solid angle.

4. Given that ταβ is the source of the relaxed Einstein equation 2hαβ = (16πG/c4)ταβ

satisfying ∂βτ
αβ = 0, verify the identities

τ 0j = ∂0

(
τ 00xj

)
+ ∂k

(
τ 0kxj

)
,

τ jk =
1

2
∂00

(
τ 00xjxk

)
+

1

2
∂p
(
2τ p(jxk) − ∂qτ pqxjxk

)
,

τ 0jxk =
1

2
∂0

(
τ 00xjxk

)
+ τ 0[jxk] + ∂p

(
τ 0pxjxk

)
,

τ jkxn =
1

2
∂0

(
2τ 0(jxk)xn − τ 0nxjxk

)
+

1

2
∂p
(
2τ p(jxk)xn − τnpxjxk

)
, (0.2)

Using these identities verify that the near-zone expansion

h00
N (t,x) =

4G

c4

∞∑
`=0

(−1)`

`!c`

(
∂

∂t

)` ∫
M

τ 00(t,x′)|x− x′|`−1 d3x′
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takes the form

h00
N =

4G

c2

{∫
M

c−2τ 00

|x− x′|
d3x′ +

1

2c2

∂2

∂t2

∫
M

c−2τ 00|x− x′| d3x′

− 1

6c3

(3)

Ikk(t) +
1

24c4

∂4

∂t4

∫
M

c−2τ 00|x− x′|3 d3x′

− 1

120c5

[
(4xkxl + 2r2δkl)

(5)

Ikl(t)− 4xk
(5)

Ikll(t) +
(5)

Ikkll(t)
]

+O(c−6)

}
+ h00[∂M ] ,

modulo surface integrals denoted by h00[∂M ], where IL(t) :=
∫

N
τ 00xLd3x and

the symbol (n) on top of I denotes the number of time derivatives.

5. Advanced problem. This problem explores how to solve the Landau-Lifshitz
formulation of the Einstein field equations for the Schwarzschild geometry.

(a) Assuming static spherical symmetry, show that the general form of the
gothic inverse metric in Cartesian coordinates can be written in the form

g00 = N(r) ,

g0j = 0 ,

gjk = α(r)P jk + β(r)njnk ,

where N , α and β are arbitrary functions of r, nj is a radial unit vector,
and P jk := δjk − njnk.

(b) Show that gαβ is given by g00 = N−1, gjk = α−1P jk + β−1njnk, and that
g := det[gαβ] = Nα2β.

(c) Show that the imposition of the harmonic gauge condition leads to the
constraint

β′ =
2

r
(α− β) ,

where a prime indicates differentiation with respect to r. Recall that
∂jF (r) = F ′(r)nj, and ∂jnk = r−1P jk.

(d) Show that the three field equations that arise from the vacuum wave equa-
tion 2gαβ = (16πG/c4)ταβ in harmonic coordinates have the form

X ′ +XY +
1

r
(2X − Y ) = Q ,

XY +
1

r
(2X + Y ) = −Q ,

Z ′ + Y Z +
2

r
Z = Q ,

where

X :=
α′

α
, Y :=

β′

β
, Z :=

N ′

N
,

and

Q :=
1

8

(
3Y 2 − Z2 + 2Y Z + 4XZ − 4XY

)
.
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Hint: One equation comes from the 00 component of the field equations,
the other two come from splitting the jk components into a piece pro-
portional to njnk and another piece proportional to P jk. Use the gauge
condition to simplify your expressions.

(e) By combining the first two field equations, obtain the solutions

X = 0 or r4β2X = c ,

where c 6= 0 is a constant.

(f) Choosing the solution X = 0, show that the solutions for α and β that
satisfy appropriate asymptotic conditions at r =∞ are

α = 1 , β = 1− a

r2
,

where a is an arbitrary constant. Find the solution for N , determine a, and
verify that the result is the Schwarzschild metric in harmonic coordinates.

(g) What is your interpretation of the second class of solutions, represented
by a non-zero value of c? Show that by combining the equation r4β2X = c
with the gauge condition, you can eliminate α and obtain the following
differential equation for β:

W ′′ − W ′

r
= c

W ′

W 2
,

where W := r2β. Spend some time (but not too much!) trying to find a
closed form solution to this nonlinear equation. (If you find one, please
send it to us!)

Post-Newtonian theory: Near zone

1. The post-Newtonian metric is given by

g00 = −1 +
2

c2
U +

2

c4

(
Ψ− U2

)
+O(c−6) ,

g0j = − 4

c3
Uj +O(c−5) ,

gjk = δjk

(
1 +

2

c2
U

)
+O(c−4) ,

where

Ψ := ψ +
1

2
∂ttX .
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and where the potentials are defined by

U(t,x) := G

∫
ρ∗′

|x− x′|
d3x′ ,

ψ(t,x) := G

∫
ρ∗′
(

3
2
v′2 − U ′ + Π′ + 3p′/ρ∗′

)
|x− x′|

d3x′ ,

X(t,x) := G

∫
ρ∗′|x− x′| d3x′ ,

U j(t,x) := G

∫
ρ∗′v′j

|x− x′|
d3x′ ,

Show that the inverse to the metric is given by

g00 = −1− 2

c2
U − 2

c4

(
Ψ + U2

)
+O(c−6) ,

g0j = − 4

c3
U j +O(c−5) ,

gjk =

(
1− 2

c2
U

)
δjk +O(c−4) ,

where U j := δjkUk. Show that the metric determinant is
√
−g = 1 + 2U/c2 +

O(c−4).

2. Show that, to the order necessary to obtain the equations of hydrodynamics
∇βT

αβ = ∂βT
αβ + ΓαµβT

µβ + ΓβµβT
αµ = 0, the Christoffel symbols are given by

Γ0
00 = − 1

c3
∂tU +O(c−5) ,

Γ0
0j = − 1

c2
∂jU +O(c−4) ,

Γ0
jk =

2

c3

(
∂jUk + ∂kUj

)
+

1

c3
δjk∂tU +O(c−5) ,

Γj00 = − 1

c2
∂jU −

1

c4

(
4∂tUj + ∂jΨ− 4U∂jU

)
+O(c−6) ,

Γj0k =
1

c3
δjk∂tU −

2

c3

(
∂kUj − ∂jUk

)
+O(c−5) ,

Γjkn =
1

c2

(
δjn∂kU + δjk∂nU − δkn∂jU

)
+O(c−4) ,
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3. Show that the N -body post-Newtonian equations of motion,

aA = −
∑
B 6=A

GMB

r2
AB

nAB

+
1

c2

−∑
B 6=A

GMB

r2
AB

[
v2
A − 4(vA · vB) + 2v2

B −
3

2
(nAB · vB)2

− 5GMA

rAB
− 4GMB

rAB

]
nAB

+
∑
B 6=A

GMB

r2
AB

[
nAB · (4vA − 3vB)

]
(vA − vB)

+
∑
B 6=A

∑
C 6=A,B

G2MBMC

r2
AB

[
4

rAC
+

1

rBC
− rAB

2r2
BC

(nAB · nBC)

]
nAB

− 7

2

∑
B 6=A

∑
C 6=A,B

G2MBMC

rABr2
BC

nBC

+O(c−4) ,

can be derived from the Lagrangian

L = −
∑
A

MAc
2

[
1− 1

2
(vA/c)

2 − 1

8
(vA/c)

4

]
+

1

2

∑
A,B 6=A

GMAMB

rAB

{
1

+
1

c2

[
3v2

A −
7

2
vA · vB −

1

2
(nAB · vA)(nAB · vB)−

∑
C 6=A

GMC

rAC

]}
.

4. Using the post-Newtonian two-body relative equation of motion

a = −Gm
r2
n− Gm

c2r2

{[
(1 + 3η)v2 − 3

2
ηṙ2 − 2(2 + η)

Gm

r

]
n

− 2(2− η)ṙv

}
+O(c−4) ,

show that the post-Newtonian energy and angular momentum per unit reduced
mass,

ε :=
1

2
v2 − Gm

r
+

1

c2

{
3

8
(1− 3η)v4 +

Gm

2r

[
(3 + η)v2 + ηṙ2 +

Gm

r

]}
+O(c−4) ,

h :=

{
1 +

1

c2

[
1

2
(1− 3η)v2 + (3 + η)

Gm

r

]}
(r × v) +O(c−4) ,

are conserved.

5. Consider the osculating equations for a two-body system in post-Newtonian
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theory,

dp

df
= 4(2− η)

Gm

c2
e sin f

de

df
=
Gm

c2p

{[
3− η +

1

8
(56− 47η)e2

]
sin f + (5− 4η)e sin 2f − 3

8
ηe2 sin 3f

}
,

dω

df
=

1

e

Gm

c2p

{
3e−

[
3− η − 1

8
(8 + 21η)e2

]
cos f − (5− 4η)e cos 2f

+
3

8
ηe2 cos 3f

}
.

(a) Obtain the net changes in each orbit element over one orbit.

(b) In the limit of small eccentricity. Show that a circular orbit (an orbit
with r constant) does not correspond to e = 0. Find a solution for p, e,
and ω that corresponds to a circular post-Newtonian orbit, and give an
interpretation of the orbit in the language of osculating Keplerian orbits.

6. Show that the magnification of the images of a Schwarzschild gravitational lens
can be written in the form

µ± =
1

1− (θE/θ±)4
,

in which θE is the Einstein angle and θ± are the two solutions to the lens
equation.

7. Advanced problem. Consider a Schwarzschild gravitational lens, and a circularly
symmetric source whose center is at an undeflected angle β0 from the lens in the
x direction. Assume that the source has an angular diameter 2χ, with χ < β0,
and model any point on the edge of the source as being on a circle described by
β(φ) = (β0 + χ cosφ)ex + χ sinφ ey, with φ ranging from 0 to 2π.

(a) In the limit χ� β0, show that the image is distorted into an ellipse, with
a minor axis parallel to the direction of the image displacement, and with
the ratio of minor to major axes given by β0/

√
β2

0 + 4θ2
E.

(b) As χ increases for fixed β0, show that the ellipse becomes concave, i.e.
becomes an arc, when

χ

(β0 − χ)
√
β2

0 − χ2
≥ 1

2θE

.

Post-Newtonian theory: Far zone

1. Consider a gravitational-wave field hαβ in the far-away wave zone, satisfying
the harmonic gauge condition. Prove by direct calculation that

R0j0k = − 1

2c2
(tt)jkpq∂ττh

pq ,
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where the “transverse-traceless projector” (tt)jkpq is given by

(tt)jkpq := P j
pP

k
q −

1

2
P jkPpq ,

where Pjk ≡ δjk −NjNk.

2. An alternative way to study the polarizations of gravitational waves in the far-
away wave zone is to focus on the Riemann tensor, and to exploit the fact
that the waves, to lowest order in post-Minkowskian theory, propagate along
null directions with respect to the background Minkowski spacetime. The idea,
following Ted Newman and Roger Penrose, is to express the components of
Rαβγδ on a basis of complex null vectors, defined by

`α := (1,N ) , nα :=
1

2
(1,−N ) ,

mα :=
1√
2

(0,ϑ+ iϕ) , m̄α :=
1√
2

(0,ϑ− iϕ) .

Here `α is an outgoing null vector tangent to the gravitational waves, nα is an
ingoing null vector, and the unit vectors ϑ and ϕ in the directions transverse
to the radial direction are defined by

ϑ := [cosϑ cosϕ, cosϑ sinϕ,− sinϑ] ,

ϕ := [− sinϕ, cosϕ, 0] .

Complex conjugation converts mα to m̄α and vice versa.

(a) Prove the following properties of the basis vectors:

`α = −c∂α(t−R/c) , nα = − c
2
∂α(t+R/c) ,

`α`
α = nαn

α = mαm
α = m̄αm̄

α = 0 ,

`αn
α = −1 , mαm̄

α = 1 ,

ηαβ = −2`(αnβ) + 2m(αm̄β) .

(b) Assume that the Riemann tensor in the far-away wave zone can be ex-
pressed as Rαβγδ = Aαβγδ/R + O(R−2), in which Aαβγδ is an arbitrary
function of retarded time τ := t−R/c and the unit vector N . Show that

∂µRαβγδ = −1

c
`µ∂τRαβγδ +O(R−2) .

(c) Making use of this differentiation rule, use the linearized Bianchi identities

∂εRαβγδ + ∂δRαβεγ + ∂γRαβδε = 0

to show that only the six components Rnpnq can be nonzero, where the
indices (p, q) run over the values `, m, and m̄. In this notation, for ex-
ample, Rn`n` stands for Rαβγδn

α`βnγ`δ. You may ignore any constant of
integration that arises when integrating with respect to retarded time.
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(d) Calculate the Ricci tensor, and show that the vacuum Einstein field equa-
tions give rise to the four additional constraints

Rn`n` = Rn`nm = Rn`nm̄ = Rnmnm̄ = 0 .

Show that there are only two unconstrained components, represented by
Rnmnm and its complex conjugate (or equivalently, by its real and imag-
inary parts). These are the gravitational-wave modes, as represented by
the Riemann tensor.

(e) Show that the link between the remaining components of the Riemann
tensor and the gravitational-wave polarizations is provided by

Rnmnm = − 1

2c2
∂ττhmm = − 1

2c2
∂ττ (h+ + ih×) .

3. Consider an array of particles that are able to move freely in the x-y plane. A
gravitational wave impinges on the plane in the z direction. It is described by
polarizations h+ and h× defined relative to the x-y-z basis.

(a) Calculate the acceleration field ξ̈ experienced by the particles. Draw the
lines of force in the x-y plane when the wave is a pure + polarization, and
when it is a pure × polarization. How does the pattern change when the
wave is a linear superposition of each polarization?

(b) Show that the local surface density of the particles is not affected by the
gravitational wave, to first order in h+ and h×. Hint: Evaluate the diver-
gence of the displacement velocity field, ∇ · ξ̇.

(c) Show that the integral of the acceleration field around a closed path in
the x-y plane always vanishes. Conclude that the acceleration field can be
expressed as the gradient of a potential ΦGW,

ξ̈ = ∇ΦGW .

Determine ΦGW in terms of h+ and h×.

4. The gravitational analogue of electromagnetic bremsstrahlung is a process in
which a body of mass m1 passes by a body of mass m2 and is scattered by a
small angle. This is the limit in which v2 � Gm/b, where m is the total mass
and b is the distance of closest approach. We still assume that v � c, and in
this problem we employ the quadrupole formula to calculate the gravitational
waves produced by the encounter.

The process corresponds to a Newtonian hyperbolic orbit with a very large
eccentricity e � 1. (For e > 1 the semimajor axis a is not defined, but the
semilatus rectum p is related as always to h, the angular momentum per unit
reduced mass, by h2 = Gmp.) We introduce the velocity at infinity defined by
v2
∞ := 2ε, where ε is the conserved energy per unit reduced mass, and we define

the impact parameter b := p/e.

(a) Using the Keplerian orbit formulae derived in earlier lectures, establish the
following relations, assuming that the orbit is confined to the x-y plane,
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and that the orbit’s pericenter is aligned with the x direction (so that
ω = 0):

v∞ =

√
Gm

p
e

[
1− 1

2
e−2 +O(e−4)

]
,

r =
b

cosφ

[
1− 1

e cosφ
+O(e−2)

]
,

v = v∞
[
−e−1 sinφ, 1 + e−1 cosφ, 0

]
+O(e−2) .

(b) Integrate the orbital equation for φ to leading order in e−1, and show that

sinφ =
v∞t

(b2 + v2
∞t

2)1/2
+O(e−1) , cosφ =

b

(b2 + v2
∞t

2)1/2
+O(e−1) .

(c) Using the quadrupole formula, and taking the waves to be propagating in
the direction of the vector N = [sinϑ cosϕ, sinϑ sinϕ, cosϑ], show that
the gravitational-wave polarizations are given by

h+,× =
2η(Gm)2

c4bR
A+,× ,

in which η := m1m2/m
2 and

A+ = −1

2
(1 + cos2 ϑ)

[
cos 2ϕ (C1 + 2C3) + 2 sin 2ϕ (S1 + S3)

]
− 1

2
sin2 ϑC1 ,

A× = − cosϑ
[
2 cos 2ϕ (S1 + S3)− sin 2ϕ (C1 + 2C3)

]
,

where Cn := cosn φ and Sn := sinφ cosn−1 φ. An unobservable constant
contribution to h+,× has been dropped.

(d) Plot A+ and A× as a function of time in units of t0 = b/v∞ for the following
sets of directions (in degrees): (ϑ, ϕ) = (0, 0), (45, 0), (90, 0), (90, 45),
(90, 90), (45, 90), and (60, 54.7), the last point corresponding to a direction
in a plane tilted 45 degrees relative to the orbital plane, and 45 degrees
from the y-direction in this plane. Running the plots from t = −10t0 to
t = +10t0 will reveal the salient features.

(e) Some of the waveforms have an unusual feature. What is it? Discuss
whether it might be observable to any practical gravitational wave detector.

5. The output of a laser interferometer like LIGO is governed by the signal S(t),
where

S(t) =
1

2

(
ej1e

k
1 − e

j
2e
k
2

)
AjkTT(τ,N ) ,

where e1 and e2 are unit vectors pointing along the two arms. The transverse-
traceless wave amplitude AjkTT is related to the + and × polarization modes
linked to the source by

AjkTT =
(
ejXe

k
X − e

j
Y e

k
Y

)
A+ +

(
ejXe

k
Y + ejY e

k
X

)
A× ,
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Figure 1: Relation between the detector basis (e1, e2) and the transverse basis (eX , eY ).

where eX and eY are unit vectors perpendicular to the propagation direction
N . The relationship between e1 and e2 and eX and eY is given in the Figure,
where θ and φ are the polar angles indicating the direction of the source as seen
from the interferometer, and ψ is a polarization angle defining the orientation
of the X − Y basis about N .

(a) Show that S(t) = F+A+ + F×A× where the detector pattern functions F+

and F× are given by

F+ =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ,

F× =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ .

(b) Show that the detector pattern functions for an interferometer whose arms
make an angle χ with each other are the same as in part (a), but multiplied
by sinχ. Hint: Orient the new arms in the 1-2 plane so that each one makes
an angle π

4
− 1

2
χ with respect to the e1 and e2 axes.

6. From the quadrupole formula for energy flux

dE

dt
=

G

5c5
˙̇ ˙I 〈pq〉 ˙̇ ˙I 〈pq〉 ,

the definition Ijk ≡
∫
ρ∗xjxkd3x, and the Newtonian equations of motion, show

that the energy flux from a binary system is given by

dE

dt
=

8

15
η2 c

3

G

(
Gm

c2r

)4 (
12v2 − 11ṙ2

)
.

Averaging over a Newtonian eccentric orbit, show that the energy flux becomes

〈dE
dt
〉 =

32

5
η2 c

5

G

(
Gm

c2a

)5

(1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4

)
.
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Show that, as a consequence, the orbital period P decreases at a rate given by

dP

dt
= −192π

5

(
GM
c3

2π

P

)5/3 1 + 73
24
e2 + 37

96
e4

(1− e2)7/2
,

where M≡ η3/5m is the “chirp” mass.

7. Consider a Keplerian orbit that is circular apart from the slow decrease in radius
a caused by the energy lost to gravitational radiation. As a function of η, m, and
the initial radius a0, calculate the lifetime of the binary system and the number
of completed orbits before the radiation reaction brings the radius to zero. Give
alternative expressions for the lifetime and number of orbits in terms of η, m,
and the initial orbital period P . Using these results, carry out the following
estimates:

(a) the remaining lifetime of the Hulse-Taylor binary pulsar PSR 1913+16,
with M1 ≈ M2 ≈ 1.4M� and P = 7.75 hours (assume that the orbit is
circular);

(b) the total time and number of cycles in the gravitational-wave signal from
an inspiralling binary system of two 1.4M� compact objects, from the
time it enters the LIGO-Virgo frequency band with a gravitational-wave
frequency of 10 Hz to the end of the inspiral (when a = 0);

(c) the remaining lifetime of the Earth-Sun system.

8. The current eccentricity of the Hulse-Taylor binary pulsar orbit is e0 ≈ 0.6,
and its orbital period is 7.75 hours. Estimate the orbital eccentricity when
gravitational waves from the system first enter the LIGO-Virgo band at 10
Hz. You may treat the eccentricity as if it were much smaller than unity when
making your estimate.
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