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Standard Deviation of F({f}) 
 Assume that there is a set {f1,…,fN}I of values and a set of rules for using this set of values to produce a value F({f}I). If F 

can be differentiated with respect to fi, the difference between F for the {f}I and that for the {f}J is given by 

       , ,

1

N

i I i JI J
i i

F
F f F f f f

f


  


  (1.1) 

The difference squared is 
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The standard deviation in F is the limit that MI and MJ → infinity in   
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If fi and fj are statistically independent, the terms with i ≠ j average to zero so that  
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The term in parenthesis in the limit that MI and MJ become infinite is the standard deviation of the values of fi 
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Finally the standard deviation in F is  
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The relationship of  to the standard deviation in fi for a Gaussian distribution is derived in Deviations.docx.  In the case of Poisson 

data with more than just a few counts i
2
=fi.   The critical step is the assumption in going from (1.3) to (1.4) that the terms for i≠j sum 

to zero. 
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