Standard Deviation of $F(\{f\})$

Assume that there is a set $\left\{f_{1}, \ldots, f_{N}\right\}_{I}$ of values and a set of rules for using this set of values to produce a value $F\left(\{f\}_{I}\right)$. If F can be differentiated with respect to f_{i}, the difference between F for the $\{f\}_{I}$ and that for the $\{f\}_{J}$ is given by

$$
\begin{equation*}
F\left(\{f\}_{I}\right)-F\left(\{f\}_{J}\right)=\sum_{i=1}^{N} \frac{\partial F}{\partial f_{i}}\left(f_{i, I}-f_{i, J}\right) \tag{1.1}
\end{equation*}
$$

The difference squared is

$$
\begin{equation*}
\left.\left.\left(F_{I}-F_{J}\right)^{2}=\sum_{i=1, j=1}^{N} \frac{\partial F}{\partial f_{i}}\right)_{\delta_{i}=0} \frac{\partial F}{\partial f_{j}}\right)_{\delta_{j}=0}\left(\left(f_{i, I}-f_{i, J}\right)\left(f_{j, I}-f_{j, J}\right)\right) \tag{1.2}
\end{equation*}
$$

The standard deviation in F is the limit that M_{I} and $\mathrm{M}_{\mathrm{J}} \rightarrow$ infinity in

$$
\begin{equation*}
\sigma_{F, M_{I}, M_{J}}^{2}=\frac{1}{2} \sum_{\substack{i=1 \\ j=1}}^{N} \frac{1}{M_{I}\left(M_{J}-1\right)} \sum_{\substack{I=1 \\ J=1 \\ J \neq I}}^{M_{l}, M_{J}} \frac{\partial F}{\partial f_{i}} \frac{\partial F}{\partial f_{j}}\left(\left(f_{i, I}-f_{i, J}\right)\left(f_{j, I}-f_{j, J}\right)\right) \tag{1.3}
\end{equation*}
$$

If f_{i} and f_{j} are statistically independent, the terms with $\mathrm{i} \neq \mathrm{j}$ average to zero so that

$$
\begin{equation*}
\sigma_{F, M_{I}, M_{J}}^{2}=\sum_{i=1}^{N}\left(\frac{\partial F}{\partial f_{i}}\right)^{2}\left(\frac{1}{2 M_{I}\left(M_{J}-1\right)} \sum_{\substack{I=1 \\ J=1 \\ J \neq I}}^{M_{I}, M_{J}}\left(f_{i, I}-f_{i, J}\right)^{2}\right) \tag{1.4}
\end{equation*}
$$

The term in parenthesis in the limit that M_{I} and M_{J} become infinite is the standard deviation of the values of f_{i}

$$
\begin{equation*}
\delta_{i}^{2}=\frac{1}{2 M_{I}\left(M_{J}-1\right)} \sum_{\substack{I=1 \\ J=1 \\ J \neq I}}^{M_{I}, M_{J}}\left(f_{i, I}-f_{i, J}\right)^{2} \tag{1.5}
\end{equation*}
$$

Finally the standard deviation in F is

$$
\begin{equation*}
\sigma_{F}^{2}=\sum_{i=1}^{N}\left(\frac{\partial F}{\partial f_{i}}\right)^{2} \delta_{i}^{2} \tag{1.6}
\end{equation*}
$$

The relationship of σ to the standard deviation in f_{i} for a Gaussian distribution is derived in Deviations.docx. In the case of Poisson data with more than just a few counts $\delta_{i}^{2}=f_{i}$. The critical step is the assumption in going from (1.3) to (1.4) that the terms for $\mathrm{i} \neq \mathrm{j}$ sum to zero.

