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Standard Deviation of F({f})

Assume that there is a set {fi,...,fy} of values and a set of rules for using this set of values to produce a value F({f},). If F
can be differentiated with respect to f;, the difference between F for the {f}, and that for the {f}; is given by
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The difference squared is
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The standard deviation in F is the limit that M, and M; — infinity in
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If f; and f; are statistically independent, the terms with i # j average to zero so that
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The term in parenthesis in the limit that M, and M, become infinite is the standard deviation of the values of f;
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Finally the standard deviation in F is
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The relationship of & to the standard deviation in f; for a Gaussian distribution is derived in Deviations.docx. In the case of Poisson
data with more than just a few counts &°=f.. The critical step is the assumption in going from (1.3) to (1.4) that the terms for i#j sum
to zero.
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