Action
Consider 
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Take the partial with respect to ci
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Interchange the derivative order – usually O.K.
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.3)

Assume that changes in ci do not effect the boundary conditions,  That is assume that

On the boundary 
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 and then integrate by parts to find
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.4)

If A is a minimum the partial in (1.4)

 is zero or for a complete set of c’s
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.5)

This is Laplace’s equation for the potential inside a conductor.  

This shows that if this potential is written as a function of a vector c, minimizing (1.1)

 with respect to the constants in c is equivalent to solving Laplace’s equation.

Action (Poisson’s equation
The action that gives rise to Poisson’s equation contains an extra term
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Again set the derivative with respect to ci equal to zero

[image: image8.wmf](

)

0

(,)(,)

(,)(/)()0

iii

Ac

xcxc

xcenxd

ccc

¶

¶¶

et

¶¶¶

æö

ÑFF

=ÑF·-=

ç÷

èø

ò

r

rrrr

rrr
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Integrate the first term in 
(2.2)

 by parts assuming that  GOTOBUTTON ZEqnNum261943  \* MERGEFORMAT  to find
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This is zero for arbitrary values of 
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   MACROBUTTON MTPlaceRef \* MERGEFORMAT (2.4)

Poisson’s equation can be solved with a sufficiently flexible ((x,c) – satisfying the boundary conditions by simply finding the c for which (2.1)

 is a minimum.

Action for Electron Density in a 1d system

..\Migma\ADEN.DOC .htm
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Charge neutrality requires
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Or
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The correct  minimizes an action defined by 
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The forms for  are restricted to those which satisfy the boundary conditions.  The derivative of the last term with respect to ci is
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Or 
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So that with the usual integration by parts
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..\Migma\MIGMA1D.htm
Energy

The ground state energy  is always less than
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (4.1)

The derivative with respect to c contains a term from the denominator
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With the usual integration by parts
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (4.3)

And in (4.1)

 is multi-3dimensional but with an intense three d character.(4.3)

 we recognize the Schroedinger equation in the parenthesis that need to be zero.  The integral in 
..\WaveFunction\Hartree.htm .doc
Variance

The Schroedinger equation can also be solved by minimizing the error coefficient in the Monte-Carlo estimate of <H>.
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (4.4)

This differs from minimizing the action by the presence of w(x)?? and by the fact that the minimum is now zero rather than <H>.  In multi-dimensional situations, using Monte Carlo selection guided by w(x), this becomes
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (4.5)

In curve fitting the variance is defined as
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