Action

Consider

A(€) = [(V(X,C) e V(X,C)/2)d7 (1.1)
Take the partial with respect to c;

0A(C) _ o =y 4 VO(X,C)

- '[[Vq)(x,c) T jdr (1.2)
Interchange the derivative order — usually O.K.
0A(c) _ o oy o VOD(X,C)

— = j[VCD(x,c) & jdr (1.3)

Assume that changes in c; do not effect the boundary conditions, That is assume that

On the boundary gi) =0 and then integrate by parts to find
oA(C) 2o\ OD(X,C)
= =I[(—v (D(X,c))T]dr (1.4)

If A is a minimum the partial in (1.4) is zero or for a complete set of ¢’s
VZ®(X,C) =0 (1.5)
This is Laplace’s equation for the potential inside a conductor.
This shows that if this potential is written as a function of a vector ¢, minimizing (1.1)
with respect to the constants in c is equivalent to solving Laplace’s equation.

Action =»Poisson’s equation

The action that gives rise to Poisson’s equation contains an extra term
A(C) = [(VO(X,€) e VO(X,C) /2~ (e/ £)n(X)D(X,€))d 7 (2.1)
Again set the derivative with respect to c; equal to zero

AA(C) . OVO(X,6) _ OD(X,C)
7:I[V(I)(x,c)oT—(e/,so)n(x) ~ jdr:O (2.2)

AVD(X,C)

j =0 to find
Cy X—Surface

Integrate the first term in (2.2) by parts assuming that

OA(C N \ OD(X,E)
ac(k )=j(—v D(X,) - (e/ £,)n(X)) 2

OVD(X,C)
ac,

dr=0 (2.3)
This is zero for arbitrary values of if and only if

V2D(X,C) =—(e/g)n(X) (2.4)



Poisson’s equation can be solved with a sufficiently flexible ®(x,c) — satisfying the boundary
conditions by simply finding the ¢ for which (2.1) is a minimum.

Action for Electron Density in a 1d system
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n, (®)=aexp(Bed) (3.1)
Charge neutrality requires
Inidr = aIexp(,Bed))dr

(3.2)
Or

o= J'nidr/jexp(ﬂeCD)dr (3.3)
The correct @ minimizes an action defined by
A=[(VDeVD/2—(e/e,)nd)dz +(L/(e,)([ nid7) log( [ exp(Bed)dr) (3.4)

The forms for @ are restricted to those which satisfy the boundary conditions. The derivative of
the last term with respect to c; is

1 Jnde )24 (3.5)
( (%ﬁ)mjﬂe@(p(ﬂe )8_Ci T .

Or
(e/eo)faexp(ﬂeCD)g—z)dr (3.6)

So that with the usual integration by parts

%=O=I(—v2®—(e/eo)(ni -n, (CD)))Z_Z)dT (3.7)
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Energy
The ground state energy is always less than

V' (X,C)V¥(X,C)/2+V W (X,C))dz
[w? (x.c)dr (4.1)

The derivative with respect to ¢ contains a term from the denominator

E(é)z'[(

,€)

2 OC. OC. oC

JE(c) I(lv‘w.vtp(i,é)+quj(i,e)]dr_ EIaLP*(

(.

o, [w?(x.c)dz
(4.2)
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With the usual integration by parts

e Ia‘Pag *)(_vzqféi,é) +(V - E)\P(x’,e)]dTJrC,C_

oc w2 (x.¢)dr (4.3)

And in (4.3) we recognize the Schroedinger equation in the parenthesis that need to be zero.
The integral in (4.1) is multi-3dimensional but with an intense three d character.
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Variance

The Schroedinger equation can also be solved by minimizing the error coefficient in the Monte-
Carlo estimate of <H>.

I w(X)
([¥? (x.c)dz) 44

This differs from minimizing the action by the presence of w(x)?? and by the fact that the
minimum is now zero rather than <H>. In multi-dimensional situations, using Monte Carlo
selection guided by w(x), this becomes

v (W (%, E)HW(%,E)- < H > ¥ (%,E))

x (€)=

Zz (6) i=1 W (X)

i=1

In curve fitting the variance is defined as

o[ 0]
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