
Action 

Consider  
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Interchange the derivative order – usually O.K. 
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  (1.3) 

Assume that changes in ci do not effect the boundary conditions,  That is assume that 
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 and then integrate by parts to find 
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  (1.4) 

If A is a minimum the partial in (1.4) is zero or for a complete set of c’s 
2 ( , ) 0x c        (1.5) 

This is Laplace’s equation for the potential inside a conductor.   

This shows that if this potential is written as a function of a vector c, minimizing (1.1) 

with respect to the constants in c is equivalent to solving Laplace’s equation. 

Action Poisson’s equation 

 

The action that gives rise to Poisson’s equation contains an extra term 

   0( , ) ( , ) / 2 ( / ) ( ) ( , )A c x c x c e n x x c d        (2.1) 

Again set the derivative with respect to ci equal to zero 
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  (2.2)  

Integrate the first term in (2.2) by parts assuming that 
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 to find 
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This is zero for arbitrary values of 
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if and only if  
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Poisson’s equation can be solved with a sufficiently flexible (x,c) – satisfying the boundary 

conditions by simply finding the c for which (2.1) is a minimum. 

Action for Electron Density in a 1d system 
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                  expen e     (3.1) 

Charge neutrality requires 

 exp( )in d e d       (3.2) 

Or 

/ exp( )in d e d       (3.3) 

 The correct  minimizes an action defined by  

 0 0/ 2 ( / ) (1/( )( ) log( exp( ) )i iA e e n d e n d e d              (3.4) 

The forms for  are restricted to those which satisfy the boundary conditions.  The derivative of 

the last term with respect to ci is 
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Or  
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So that with the usual integration by parts 
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Energy 

 The ground state energy  is always less than 
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 (4.1) 

The derivative with respect to c contains a term from the denominator 
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 (4.2) 
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With the usual integration by parts 
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(4.3) 

And in (4.3) we recognize the Schroedinger equation in the parenthesis that need to be zero.  

The integral in (4.1) is multi-3dimensional but with an intense three d character. 
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Variance 

The Schroedinger equation can also be solved by minimizing the error coefficient in the Monte-

Carlo estimate of <H>. 

 

      

  

2
2

2

2
2

, , ,

( )

,

x c H x c H x c
d

w x
c

x c d






     








(4.4) 

This differs from minimizing the action by the presence of w(x)?? and by the fact that the 

minimum is now zero rather than <H>.  In multi-dimensional situations, using Monte Carlo 

selection guided by w(x), this becomes 
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(4.5) 

 

In curve fitting the variance is defined as 
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