Action

Consider

$$
\begin{equation*}
A(\vec{c}) \equiv \int(\nabla \Phi(\vec{x}, \vec{c}) \bullet \nabla \Phi(\vec{x}, \vec{c}) / 2) d \tau \tag{1.1}
\end{equation*}
$$

Take the partial with respect to c_{i}

$$
\begin{equation*}
\frac{\partial A(\vec{c})}{\partial c_{i}} \equiv \int\left(\nabla \Phi(\vec{x}, \vec{c}) \bullet \frac{\partial \nabla \Phi(\vec{x}, \vec{c})}{\partial c_{i}}\right) d \tau \tag{1.2}
\end{equation*}
$$

Interchange the derivative order - usually O.K.

$$
\begin{equation*}
\frac{\partial A(\vec{c})}{\partial c_{i}} \equiv \int\left(\nabla \Phi(\vec{x}, \vec{c}) \bullet \frac{\nabla \partial \Phi(\vec{x}, \vec{c})}{\partial c_{i}}\right) d \tau \tag{1.3}
\end{equation*}
$$

Assume that changes in c_{i} do not effect the boundary conditions, That is assume that
On the boundary $\frac{\partial \Phi}{\partial c_{i}}=0$ and then integrate by parts to find
$\frac{\partial A(\vec{c})}{\partial c_{i}} \equiv \int\left(\left(-\nabla^{2} \Phi(\vec{x}, \vec{c})\right) \frac{\partial \Phi(\vec{x}, \vec{c})}{\partial c_{i}}\right) d \tau$
If A is a minimum the partial in (1.4) is zero or for a complete set of c 's $\nabla^{2} \Phi(\vec{x}, \vec{c})=0$
This is Laplace's equation for the potential inside a conductor.
This shows that if this potential is written as a function of a vector \mathbf{c}, minimizing (1.1) with respect to the constants in \mathbf{c} is equivalent to solving Laplace's equation.

Action \rightarrow Poisson's equation

The action that gives rise to Poisson's equation contains an extra term
$A(\vec{c}) \equiv \int\left(\nabla \Phi(\vec{x}, \vec{c}) \bullet \nabla \Phi(\vec{x}, \vec{c}) / 2-\left(e / \varepsilon_{0}\right) n(\vec{x}) \Phi(\vec{x}, \vec{c})\right) d \tau$
Again set the derivative with respect to c_{i} equal to zero
$\frac{\partial A(\vec{c})}{\partial c_{i}}=\int\left(\nabla \Phi(\vec{x}, \vec{c}) \bullet \frac{\partial \nabla \Phi(\vec{x}, \vec{c})}{\partial c_{i}}-\left(e / \varepsilon_{0}\right) n(\vec{x}) \frac{\partial \Phi(\vec{x}, \vec{c})}{\partial c_{i}}\right) d \tau=0$
Integrate the first term in (2.2) by parts assuming that $\left.\frac{\partial \nabla \Phi(\vec{x}, \vec{c})}{\partial c_{k}}\right)_{\vec{x} \rightarrow \text { Surface }}=0$ to find $\frac{\partial A(\vec{c})}{\partial c_{k}}=\int\left(-\nabla^{2} \Phi(\vec{x}, \vec{c})-\left(e / \varepsilon_{0}\right) n(\vec{x})\right) \frac{\partial \Phi(\vec{x}, \vec{c})}{\partial c_{k}} d \tau=0$
This is zero for arbitrary values of $\frac{\partial \nabla \Phi(\vec{x}, \vec{c})}{\partial c_{k}}$ if and only if

$$
\begin{equation*}
\nabla^{2} \Phi(\vec{x}, \vec{c})=-\left(e / \varepsilon_{0}\right) n(\vec{x}) \tag{2.4}
\end{equation*}
$$

Poisson's equation can be solved with a sufficiently flexible $\Phi(\mathbf{x}, \mathbf{c})$ - satisfying the boundary conditions by simply finding the \mathbf{c} for which (2.1) is a minimum.

Action for Electron Density in a 1d system

.. M Migma\ADEN.DOC .htm

$$
\begin{equation*}
n_{e}(\Phi)=\alpha \exp (\beta e \Phi) \tag{3.1}
\end{equation*}
$$

Charge neutrality requires

$$
\begin{equation*}
\int n_{i} d \tau=\alpha \int \exp (\beta e \Phi) d \tau \tag{3.2}
\end{equation*}
$$

Or
$\alpha=\int n_{i} d \tau / \int \exp (\beta e \Phi) d \tau$
The correct Φ minimizes an action defined by
$A=\int\left(\nabla \Phi \bullet \nabla \Phi / 2-\left(e / e_{0}\right) n_{i} \Phi\right) d \tau+\left(1 /\left(e_{0} \beta\right)\left(\int n_{i} d \tau\right) \log \left(\int \exp (\beta e \Phi) d \tau\right)\right.$
The forms for Φ are restricted to those which satisfy the boundary conditions. The derivative of the last term with respect to c_{i} is
$\left(1 /\left(e_{0} \beta\right) \frac{\int n_{i} d \tau}{\int \exp (\beta e \Phi) d \tau} \int \beta e \exp (\beta e \Phi) \frac{\partial \Phi}{\partial c_{i}} d \tau\right.$
Or
$\left(e / e_{0}\right) \int \alpha \exp (\beta e \Phi) \frac{\partial \Phi}{\partial c_{i}} d \tau$
So that with the usual integration by parts
$\frac{\partial A}{\partial c_{i}}=0=\int\left(-\nabla^{2} \Phi-\left(e / e_{0}\right)\left(n_{i}-n_{e}(\Phi)\right)\right) \frac{\partial \Phi}{\partial c_{i}} d \tau$
.. ${ }^{\text {MigmalMIGMA1D.htm }}$

Energy

The ground state energy is always less than

$$
\begin{equation*}
E(\vec{c})=\frac{\int\left(\nabla \Psi^{*}(\vec{x}, \vec{c}) \cdot \nabla \Psi(\vec{x}, \vec{c}) / 2+V \Psi^{2}(\vec{x}, \vec{c})\right) d \tau}{\int \Psi^{2}(\vec{x}, \vec{c}) d \tau} \tag{4.1}
\end{equation*}
$$

The derivative with respect to c contains a term from the denominator

$$
\begin{equation*}
\frac{\partial E(\vec{c})}{\partial c_{i}}=\frac{\int\left(\frac{1}{2} \nabla \frac{\partial \Psi^{*}(\vec{x}, \vec{c})}{\partial c_{i}} \cdot \nabla \Psi(\vec{x}, \vec{c})+\frac{\partial \Psi^{*}(\vec{x}, \vec{c})}{\partial c_{i}} V \Psi(\vec{x}, \vec{c})\right) d \tau-E \int \frac{\partial \Psi^{*}(\vec{x}, \vec{c})}{\partial c_{i}} \Psi\left(. .3 \Psi^{2}(\vec{x}, \vec{c}) d \tau\right.}{\int} \tag{4.2}
\end{equation*}
$$

With the usual integration by parts
$\frac{\partial E(\vec{c})}{\partial c_{i}}=\frac{\int \frac{\partial \Psi^{*}(\vec{x}, \vec{c})}{\partial c_{i}}\left(-\frac{\nabla^{2} \Psi(\vec{x}, \vec{c})}{2}+(V-E) \Psi(\vec{x}, \vec{c})\right) d \tau+c . c .}{\int \Psi^{2}(\vec{x}, \vec{c}) d \tau}$
And in (4.3) we recognize the Schroedinger equation in the parenthesis that need to be zero.
The integral in (4.1) is multi-3dimensional but with an intense three d character.
..|WaveFunction\Hartree.htm .doc

Variance

The Schroedinger equation can also be solved by minimizing the error coefficient in the MonteCarlo estimate of $\langle\mathrm{H}\rangle$.

$$
\begin{equation*}
\chi^{2}(\vec{c})=\frac{\int \frac{\left(\Psi(\vec{x}, \vec{c}) H \Psi(\vec{x}, \vec{c})-<H>\Psi^{2}(\vec{x}, \vec{c})\right)^{2}}{w(\vec{x})} d \tau}{\left(\int \Psi^{2}(\vec{x}, \vec{c}) d \tau\right)^{2}} \tag{4.4}
\end{equation*}
$$

This differs from minimizing the action by the presence of $w(x)$?? and by the fact that the minimum is now zero rather than <H>. In multi-dimensional situations, using Monte Carlo selection guided by $\mathrm{w}(\mathrm{x})$, this becomes

$$
\begin{equation*}
\chi^{2}(\vec{c})=\frac{\sum_{i=1}^{N} \frac{\left(\Psi\left(\vec{x}_{i}, \vec{c}\right) H \Psi\left(\vec{x}_{i}, \vec{c}\right)-<H>\Psi^{2}\left(\vec{x}_{i}, \vec{c}\right)\right)^{2}}{w^{2}\left(\vec{x}_{i}\right)}}{\left(\sum_{i=1}^{N} \frac{\Psi^{2}\left(\vec{x}_{i}, \vec{c}\right)}{w\left(x_{i}\right)}\right)^{2}} \tag{4.5}
\end{equation*}
$$

In curve fitting the variance is defined as
$\chi^{2}(\vec{c})=\iiint_{V}\left(\frac{f(\vec{r})-f_{A}(\vec{r}, \vec{c})}{\varepsilon(\vec{r})}\right)^{2}$
.. loptimization\Extremal.htm

