```
h=(end-beg)/N
ai=h*(fun(beg)+fun(end))/2
for I=1, N-1
    x=beg+i x h
    ai=ai+h*fun(x)
enddo
ai=ai }\times
```


End point trap rule

The use of the end points complicates the evaluation in two ways. First the end values need to be divided by 2 , secondly they need to be calculated and this may involve analytically expanding functions such as $(1-\cos (x)) / x^{2}$.

There are advantages:

1. The points evaluated are the ones actually used.
2. Placing N points in the center of each region allows $N \rightarrow 2 N$ with N new function evaluations.
3. Evaluations with two different values of N allow the error term to be estimated and removed. Richardson.doc

The code accurate to order h^{2} for end point trap rule is in the box to the left ${ }^{1}$.
Start with Midpoint Traprule.doc Equation (10)
$\int_{\text {beg }}^{e n d} f(x) d x=h \sum_{i=1}^{N} f\left(x_{m i}\right)+\frac{h^{2}}{24}\left\{\left(f^{\prime}(\right.\right.$ end $)-f^{\prime}($ beg $\left.\left.)\right)\right\}-\frac{7 h^{4}}{5760}\left\{\left(f^{\prime \prime \prime}(\right.\right.$ end $)-f^{\prime \prime \prime}($ beg $\left.\left.)\right)\right\}+O\left(h^{6}\right)(1)$
The values of $f\left(x_{i}\right)$ need to be found.

Start with the expressions at $\pm\left(\mathrm{h}_{\mathrm{i}} / 2\right.$
$f\left(x_{i}\right)=f\left(x_{m i}\right)-f^{\prime}\left(x_{m i}\right)\left(\frac{h}{2}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{m i}\right)\left(\frac{h}{2}\right)^{2}-\frac{1}{6} f^{\prime \prime \prime}\left(x_{m i}\right)\left(\frac{h}{2}\right)^{3}+\frac{1}{24} f^{i v}\left(x_{m i}\right)\left(\frac{h}{2}\right)^{4}-\cdots$
$f\left(x_{i+1}\right)=f\left(x_{m i}\right)+f^{\prime}\left(x_{m i}\right)\left(\frac{h}{2}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{m i}\right)\left(\frac{h}{2}\right)^{2}-\frac{1}{6} f^{\prime \prime \prime}\left(x_{m i}\right)\left(\frac{h_{i}}{2}\right)^{3}+\frac{1}{24} f^{i v}\left(x_{m i}\right)\left(\frac{h}{2}\right)^{4}-\cdots$

Add these two to find that
$f\left(x_{i}\right)+f\left(x_{i+1}\right)=2 f\left(x_{m i}\right)+f^{\prime \prime}\left(x_{m i}\right)\left(\frac{h}{2}\right)^{2}+\frac{1}{12} f^{i v}\left(x_{m i}\right)\left(\frac{h}{2}\right)^{4}+\ldots$ (3)

Or equivalently

End point trap rule.docx
$f\left(x_{m i}\right)=\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}-f^{\prime \prime}\left(x_{m i}\right) \frac{1}{2}\left(\frac{h}{2}\right)^{2}-\frac{1}{24} f^{i v}\left(x_{m i}\right)\left(\frac{h}{2}\right)^{4}$
Note that there are only even derivatives in this expansion. Substitute this into (1)to find

$$
\begin{align*}
\int_{\text {beg }}^{e n d} f(x) d x & =h \sum_{i=1}^{N} \frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}-\frac{1}{2}\left(\frac{h}{2}\right)^{2} h \sum_{i=1}^{N} f^{\prime \prime}\left(x_{m i}\right)-\frac{1}{24}\left(\frac{h}{2}\right)^{4} h \sum_{i=1}^{N} f^{i v}\left(x_{m i}\right) \tag{5}\\
& +\frac{h^{2}}{24}\left\{\left(f^{\prime}(\text { end })-f^{\prime}(\text { beg })\right)\right\}-\frac{7 h^{4}}{5760}\left\{\left(f^{\prime \prime \prime}(\text { end })-f^{\prime \prime \prime}(\text { beg })\right)\right\}+O\left(h^{6}\right)
\end{align*}
$$

Use (1) to Integrate f"

$$
\begin{align*}
\int_{\text {beg }}^{\text {end }} f "(x) d x & =h \sum_{i=1}^{N} f^{\prime \prime}\left(x_{m i}\right)+\frac{h^{2}}{24}\left\{\left(f^{\prime \prime \prime}(\text { end })-f^{\prime \prime \prime}(\text { beg })\right)\right\}-\frac{7 h^{4}}{5760}\left\{\left(f^{i v}(\text { end })-f^{i v}(\text { beg })\right)\right\}+O\left(h^{6}\right) \tag{6}\\
& =\left\{f^{\prime}(\text { end })-f^{\prime}(\text { beg })\right\}
\end{align*}
$$

Or
$h \sum_{i=1}^{N} f^{\prime \prime}\left(x_{\text {mi }}\right)=\left\{f^{\prime}(\right.$ end $)-f^{\prime}($ beg $\left.)\right\}-\frac{h^{2}}{24}\left\{\left(f^{\prime \prime \prime}(\right.\right.$ end $)-f^{\prime \prime \prime}($ beg $\left.\left.)\right)\right\}+O\left(h^{4}\right)$ (7)
To this accuracy the sum of $f^{\text {iv }}$ is the difference of the values of $f^{\prime \prime \prime}$, so that (5) becomes

$$
\begin{align*}
\int_{\text {beg }}^{\text {end }} f(x) d x & =h \sum_{i=1}^{N} \frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}-\frac{1}{2}\left(\frac{h}{2}\right)^{2}\left\{\left(f^{\prime}(\text { end })-f^{\prime}(\text { beg })\right)-\frac{h^{2}}{24}\left(f^{\prime \prime \prime}(\text { end })-f^{\prime \prime \prime \prime}(\text { beg })\right)\right\} \\
& -\frac{1}{24}\left(\frac{h}{2}\right)^{4}\left\{\left(f^{\prime \prime \prime}(\text { end })-f^{\prime \prime \prime}(\text { beg })\right)\right\}+\frac{h^{2}}{24}\left\{\left(f^{\prime}(\text { end })-f^{\prime}(\text { beg })\right)\right\} \\
& -\frac{7 h^{4}}{5760}\left\{\left(f^{\prime \prime \prime}(\text { end })-f^{\prime \prime \prime}(\text { beg })\right)\right\}+O\left(h^{6}\right) \tag{8}\\
& =h \sum_{i=1}^{N} \frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}+h^{2}\left(f^{\prime}(\text { end })-f^{\prime}(\text { beg })\right)\left(-\frac{1}{8}+\frac{1}{24}\right) \\
& +h^{4}\left(f^{\prime \prime \prime \prime}(\text { end })-f^{\prime \prime \prime}(\text { beg })\right)\left(\frac{1}{24 \times 8}-\frac{1}{24 \times 16}-\frac{7}{5760}\right)+O\left(h^{6}\right)
\end{align*}
$$

$\left(-\frac{1}{8}+\frac{1}{24}\right)=-\frac{1}{12}$
$\left(\frac{1}{24 \times 8}-\frac{1}{24 \times 16}-\frac{7}{5760}\right)=\frac{1}{5760}(30-15-7)=\frac{8}{5760}=\frac{1}{720}$
So that

$$
\int_{b e g}^{e n d} f(x) d x=h \sum_{i=1}^{N} \frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}-\frac{h^{2}}{12}\left(f^{\prime}(\text { end })-f^{\prime}(\text { beg })\right)+\frac{h^{4}}{720}\left(f^{\prime \prime \prime}(\text { end })-f^{\prime \prime \prime}(\text { beg })\right)+O\left(h^{6}\right) \text { (9) }
$$

The coefficients of the h^{2} and h^{4} terms are larger than those in midpoint integration, but the powers of h are the same.

Testing

Let $\mathrm{h}=1$

1. $\int_{0}^{1} d x=1 \doteq h \times\left(\frac{1+1}{2}\right)=1$
2. $\int_{0}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2} \doteq h \times\left(\frac{0+1}{2}\right)-\frac{h^{2}}{12}\{1-1\}=\frac{1}{2}$
3. $\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3} \doteq h \times\left(\frac{0+1}{2}\right)-\frac{h^{2}}{12}\{2\}=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}$ Checks the $-1 / 12$ in the h^{2} term
4. $\int_{0}^{1} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{0} ^{1}=\frac{1}{4} \doteq \frac{1}{2}-\frac{1}{12}\{3\}+\frac{1}{720}\{6-6\}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$
5. $\int_{0}^{1} x^{4} d x=\left.\frac{x^{5}}{5}\right|_{0} ^{1}=\frac{1}{5} \doteq \frac{1}{2}-\frac{1}{12}\{4\}+\frac{1}{720}\{24\}=\frac{1}{2}-\frac{1}{3}+\frac{1}{30}=\frac{1}{30}\{15-10+1\}=\frac{1}{5}$

Checks the $+1 / 720$ in the h^{4} term
6. $\int_{0}^{1} x^{5} d x=\left.\frac{x^{6}}{6}\right|_{0} ^{1}=\frac{1}{6} \doteq \frac{1}{2}-\frac{1}{12}\{5\}+\frac{1}{720}\{60\}=\frac{1}{2}-\frac{5}{12}+\frac{1}{12}=\frac{1}{12}\{6-5+1\}=\frac{1}{6}$

This means that a Lagrange polynomial through 6 points will integrate exactly.

Figure 17 points with intervals h, 5 internal points, and 6 half interval points.

$$
h=(E-B) /(N-1)
$$

[^0]
[^0]: ${ }^{1}$ A very common error in end point trap rule is an incorrect evaluation of the point at either x_{0} or x_{N}. When this happens the integral has an error equal to $\left(f\left(x_{0}\right)-f_{\text {actual }}\left(x_{0}\right)\right) * h$. This is determined by plotting ai as a function of h, rather than h^{2}. A straight line for three values does not mean that this is a reasonable extrapolation. It means that there is an error in a single function value.

