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(1.1)

Introduce a positive definite sampling function g(x) and let 
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With a positive definite g, G is single valued function that starts at 0 for x = a and ends at 1 for x =b.  Thus t is a number between 0 and 1.  Notice that x has move the the upper limit of the integral.   
With this definition for the function x(t)
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So that
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This is discussed at length for analytically integral functions for which an immediate solution for x(t) is possible in Laurent.doc.  the Laurent transform is for the 0 to  range.   to  range while an arc tangent transform is used for the -
Semi-infinite range

Write the integral 
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Let 
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The region (a,b) in (1.2)

 becomes
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The value of the integral given in (1.4)

 becomes
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The value of x(t) is needed.  Equation (1.2)

 becomes
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This solves as
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Numerically 

For t=1, x=ln(1-1)/α=∞, but computers do not handle ln(1-1) very well.    In order to leave a few digits for the last term the ending point for the integral in tmax should be (1-10-13).  This means that the integration in t extends only to 13×2.3/α.  
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Figure 1  r2(t)exp(-2r(t)) versus t
100, 200, 400 pts are used toevaluatethe integral

  AN     2.500000151518428E-01  100 pts

 AN2     2.500000011811078E-01 200 PTS

 AN4     2.500000000742313E-01 400 PTS 

 ANR     2.500000000566618E-01 Richardson’s extrapolation 

ANRF   2.500000005080060E-01  ± 4.443478404E-10

Fit of two points to AN, AN2, AN4  [..\Fittery\nlfit-r\StdDev\3ptLinFit.docx]  Answer is ¼.  The code is in SampleInt.zip
Solving for x(t)with an integrable function
The value of x(t) can be found by solving the equation 
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Newton’s method, ..\optimization\solving\Newton.doc .htm, involves expanding the (3.1)

 as a function of x about  x0, setting the result equal to zero and solving for the next value of x
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So that
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Note that G’ is g so that the sequence 
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can be iterated to find x(t).  Note that this could take a lot of computer time if every value of G(x0;a) requires a revaluation of the integral in the numerator of (1.2)

.  Normally, there would be a Lagrange interpolation of a single set of points, but this can introduce errors.  An exact method involves making g(x) explicitly the straight line connecting a set of values g(xi).
Line connecting the points modification.


A very simple g(x) is the line connecting a group of points
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Let y= x-xi-1 so that
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For y = xi-xi-1 the positive first term cancels half of the negative part of the second term leading to the seemingly linear
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The values in (3.6)

.(3.7)

 are the exact values of G(xi) for the g(x) that is the line connecting the points g(xi).  The values between these points are given exactly by 
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Figure 2  Integral of line connecting points (black).  Linear interpolation of this same line.  The g values are g(1)=3, g(2)=6,g(3)=5.  The integral is below the linear interpolation for a positive g’ and below it for a negative g’.  Code is in infosamp.zip.
Solving for x(t)in line connecting the points modification 

The value of G(xi) form an ascending series of values starting at 0 and ending at 1.  
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The subroutine LOCATE(tG(NMAX),G,NMAX,J) ..\interpolation\Locate.doc returns a value J such that G(J)(t(G(J+1).  In the region X(J) ( x ( X(J+1) 
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 Equation (1.2)

 becomes
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Define
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So that
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This is a quadratic equation with a general solution given by ( ..\solving\Quadratic.doc).  
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C is greater than or equal to zero, since locate returned a J such that tG(a,b) > G(J).  B is always less than 0, while the sign of A is unknown.
 Equation ..\solving\Quadratic.doc(3.13)

 is numerically unsuitable since it will involve large cancellations.   Following (  GOTOBUTTON ZEqnNum532652  \* MERGEFORMAT ) rewrite (3.13)

 as
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The + sign yields y > 0.  So

 
[image: image26.wmf](

)

2

2

114/

C

y

BACB

-

=

+-


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (3.15)

The largest value of C is G(J+1)-G(j) =( g(J+1)+g(J))(X(J+1)-X(J))/2 so that the largest value of 4AC/B2 is
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This means that the most negative value of the argument of the square root in (3.15)

 is
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Thus the value of y is never imaginary.

Summary


Find an arrangement of g(J)=g(xJ).  Use equation (3.15)

 which yields y(t).  Finally
(3.11)

 to define the terms in (3.7)

 to find G(J).  Then for values of t between 0 and 1, use locate(tG(NMAX),G,NMAX.J) to find the relevant J.  Use 
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� J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Methune & Co. Ltd, London, John Wiley & Sons Inc, New York.  pp. 57 -59
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