Importance Sampling!
b

I=[f(x)dx (1.1)

a

Introduce a positive definite sampling function g(x) and let

G(x:a
= (1.2)
G(b;a

With a positive definite g, G is single valued function that starts at O for x = a and ends at 1 for x =b. Thus
tis a number between 0 and 1. Notice that x has move the the upper limit of the integral.

With this definition for the function x(t)

_ g9(x)dx
dt= 6 (b;a) (1.3)
So that

Mdt (1.4)

| =G(b;a) g(x(t)

O e

This is discussed at length for analytically integral functions for which an immediate solution for x(t) is
possible in Laurent.doc. the Laurent transform is for the 0 to o range while an arc tangent transform is
used for the -co to oo range.

Semi-infinite range
Write the integral

I :I f(x)dx (2.1)
0

Let

g(x)=exp(-ax) (2.2)

1 J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Methune & Co. Ltd, London, John Wiley &
Sons Inc, New York. pp. 57 -59


/public_html/integration/Laurent.doc

The region (a,b) in (1.2) becomes
G(0,0) = 1 (2.3)
a

The value of the integral given in (1.4) becomes
1 1

| == t))f t))dt 2.4
L@@ t(xe e

The value of x(t) is needed. Equation (1.2) becomes

Eexp(—ay) dy (01[(1— exp(—ax))j

t= - 1

T y = (1—exp(—ax)) (2.5)
exp(—ay)dy »

This solves as

t—1=exp(—
p(-ax) (2.6)
x=In(1-t)/a
Numerically

For t=1, x=In(1-1) /a=oo, but computers do not handle In(1-1) very well. In order to leave a

few digits for the last term the ending point for the integral in tmax should be (1-10-13). This
means that the integration in t extends only to 13x2.3/a.

' - . Figure 1 rz(t)exp(—2r(t)) versus t
100, 200, 400 pts are used toevaluatethe integral

AN 2.500000151518428E-01 100 pts

AN2 2.500000011811078E-01 200 PTS

AN4 2.500000000742313E-01 400 PTS

ANR 2.500000000566618E-01 Richardson’s

o extrapolation

, . ANRF 2.500000005080060E-01 + 4.443478404E-10
0. o o " Fit of two points to AN, AN2, AN4 [..\Fittery\nlfit-
r\StdDev\3ptLinFit.docx] Answer is %. The code is in

Samplelnt.zip

Solving for x(t)with an integrable function

The value of x(t) can be found by solving the equation


../Fittery/nlfit-r/StdDev/3ptLinFit.docx
../Fittery/nlfit-r/StdDev/3ptLinFit.docx
SampleInt.zip

txG(a;b)-G(x;a)=0 (3.1)

Newton’s method, ..\optimization\solving\Newton.doc .htm, involves expanding the (3.1) as a function
of x about xg, setting the result equal to zero and solving for the next value of x

tG(a;b) -G (x,.a)— (% —%)G'(%,a)=0 (3.2)
So that

tG(a;h)-G(x,.a)
G'(x,.2)

X =Xy — (3.3)

Note that G’ is g so that the sequence
tG(a;h)-G(x,.a)

9(%)
can be iterated to find x(t). Note that this could take a lot of computer time if every value of G(x;a)
requires a revaluation of the integral in the numerator of (1.2). Normally, there would be a Lagrange

interpolation of a single set of points, but this can introduce errors. An exact method involves making
g(x) explicitly the straight line connecting a set of values g(x;).

Xy = X, (3.4)

Line connecting the points modification.
A very simple g(x) is the line connecting a group of points

)g(xi+1)_g(xi)

X, —X

i+1 i

a() =g(x)+(x—x (3.5)

Let y= x-x;1 so that
G(%)=0
g (Xi+l) - g (Xi )

Xig — X%

G(x +y):G(xi)+g(xi)jdy+ Iydy (3.6)
0 0
2

=G(x)+g(x)xy+ g(xzil):i()(i)y?

For y = xi-xi.1 the positive first term cancels half of the negative part of the second term leading to the
seemingly linear


../optimization/solving/Newton.doc
../optimization/solving/Newton.htm

G(x,)=0
a(x)+9(x.,) (3.7)
G(Xi+l):G(Xi)+ 2 (Xi+l_xi)

The values in (3.7) are the exact values of G(x;) for the g(x) that is the line connecting the points g(x;).
The values between these points are given exactly by (3.6).
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Figure 2 Integral of line connecting points (black). Linear interpolation of this same line. The g values are
g(1)=3, g(2)=6,g(3)=5. The integral is below the linear interpolation for a positive g’ and below it for a negative

g’. Code is in infosamp.zip.

Solving for x(t)in line connecting the points modification

The value of G(x;) form an ascending series of values starting at 0 and ending at 1.

G(0)=0


infosamp.zip

The subroutine LOCATE(tG(NMAX),G,NMAX,J) ..\interpolation\Locate.doc returns a value J such that
G(J)<t<G(J+1). Inthe region X(J) < x < X(J+1)

G(x.a):c;(a)+g(a)(x-x(J))+%E(J +1)‘9(JJ) (x-X(3)} (9

(I +1)-X(J)
Equation (1.2) becomes
6 (bia) -6 (1)-9 ) (- X ()33 g R (X () =0 @
Define
y=x-X(J)
C =1G(ab)-G(J)
B=-g{J} (3.11)

_ 1 g+1)-g()
2 X(3+1)-XQ)

So that
Ay’ +By+C=0 (3.12)

This is a quadratic equation with a general solution given by ( ..\solving\Quadratic.doc).

2 —_—
Y=—Ei—B 4AC (3.13)
2A 2A

Cis greater than or equal to zero, since locate returned a J such that tG(a,b) > G(J). B is always less than
0, while the sign of A is unknown.

Equation (3.13) is numerically unsuitable since it will involve large cancellations. Following (
..\solving\Quadratic.doc) rewrite (3.13) as

B$\/BZ—4ACXBi\/BZ—4AC_ B? - B” +4AC -2C

2A B++/B2 —4AC 2A(Bi\/Bz—4AC) (BiB\/1—4AC/BZ)

(3.14)

y=-

The + sign yields y > 0. So

-2C

B(1+\/1—4AC / BZ)

y:

(3.15)

The largest value of C is G(J+1)-G(j) =( g(J+1)+g(J))(X(J+1)-X(J))/2 so that the largest value of 4AC/B’ is
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4AC _, -1 g(0+D-g(3) (90 +)+9@))(X(I+1)-XA)) 1

B? 2 X(3+1)-X(J) 2 P

~ g°@+)-9°(3)
- 7 00) (3.16)
_, 90+

9°(9)

This means that the most negative value of the argument of the square root in (3.15) is

9°(J +1)
9°(9)

Thus the value of y is never imaginary.

1-4AC/B? > (3.17)

Summary

Find an arrangement of g(J)=g(x,). Use equation (3.7) to find G(J). Then for values of t between
0 and 1, use locate(tG(NMAX),G,NMAX.J) to find the relevant J. Use (3.11) to define the terms in (3.15)
which yields y(t). Finally

x(t)=x(J)+y(t) (3.18)



