Importance Sampling ${ }^{1}$

$I=\int_{a}^{b} f(x) d x$

Introduce a positive definite sampling function $g(x)$ and let
$t=\frac{\int_{a}^{x} g(y) d y}{\int_{a}^{b} g(y) d y}=\frac{G(x ; a)}{G(b ; a)}$
With a positive definite g, G is single valued function that starts at 0 for $x=a$ and ends at 1 for $x=b$. Thus t is a number between 0 and 1. Notice that x has move the the upper limit of the integral.

With this definition for the function $x(t)$

$$
\begin{equation*}
\mathrm{dt}=\frac{\mathrm{g}(\mathrm{x}) \mathrm{dx}}{G(b ; a)} \tag{1.3}
\end{equation*}
$$

So that
$I=G(b ; a) \int_{0}^{1} \frac{f(x(t))}{g(x(t))} d t$
This is discussed at length for analytically integral functions for which an immediate solution for $x(t)$ is possible in Laurent.doc. the Laurent transform is for the 0 to ∞ range while an arc tangent transform is used for the $-\infty$ to ∞ range.

Semi-infinite range

Write the integral
$I=\int_{0}^{\infty} f(x) d x$

Let

$$
g(x)=\exp (-\alpha x)
$$

[^0]The region (a, b) in (1.2) becomes
$G(\infty, 0)=\frac{1}{\alpha}$
The value of the integral given in (1.4) becomes
$I=\frac{1}{\alpha} \int_{0}^{1} \exp (\alpha x(t)) f(x(t)) d t$
The value of $x(t)$ is needed. Equation (1.2) becomes
$t=\frac{\int_{0}^{x} \exp (-\alpha y) d y}{\int_{0}^{\infty} \exp (-\alpha y) d y}=\frac{\left(\frac{1}{\alpha}(1-\exp (-\alpha x))\right)}{\frac{1}{\alpha}}=(1-\exp (-\alpha x))$
This solves as

$$
\begin{align*}
& t-1=\exp (-\alpha x) \tag{2.6}\\
& x=\ln (1-t) / \alpha
\end{align*}
$$

Numerically

For $t=1, \mathrm{x}=\ln (1-1) / \alpha=\infty$, but computers do not handle $\ln (1-1)$ very well. In order to leave a few digits for the last term the ending point for the integral in $t_{\max }$ should be (1-10-13). This means that the integration in t extends only to $13 \times 2.3 / \alpha$.

Figure $1 r^{2}(t) \exp (-2 r(t))$ versus t 100, 200, 400 pts are used toevaluatethe integral

AN $2.500000151518428 \mathrm{E}-01100$ pts
AN2 $2.500000011811078 \mathrm{E}-01200$ PTS
AN4 $2.500000000742313 \mathrm{E}-01400$ PTS
ANR 2.500000000566618E-01 Richardson's extrapolation
ANRF $2.500000005080060 \mathrm{E}-01 \pm 4.443478404 \mathrm{E}-10$ Fit of two points to AN, AN2, AN4 [... Fittery\nlfitr StdDev $\backslash 3$ ptLinFit.docx] Answer is $1 / 4$. The code is in
SampleInt.zip

Solving for $x(t)$ with an integrable function

The value of $x(t)$ can be found by solving the equation
$t \times G(a ; b)-G(x ; a)=0$
Newton's method, ... Joptimization\solving\Newton.doc. htm, involves expanding the (3.1) as a function of x about x_{0}, setting the result equal to zero and solving for the next value of x
$t G(a ; b)-G\left(x_{0}, a\right)-\left(x_{1}-x_{0}\right) G^{\prime}\left(x_{0}, a\right)=0$
So that

$$
\begin{equation*}
x_{1}=x_{0}-\frac{t G(a ; b)-G\left(x_{0}, a\right)}{G^{\prime}\left(x_{0}, a\right)} \tag{3.3}
\end{equation*}
$$

Note that G^{\prime} is g so that the sequence
$x_{0} \rightarrow x_{0} \frac{t G(a ; b)-G\left(x_{0}, a\right)}{g\left(x_{0}\right)}$
can be iterated to find $\mathrm{x}(\mathrm{t})$. Note that this could take a lot of computer time if every value of $\mathrm{G}\left(\mathrm{x}_{\mathrm{o}} ; \mathrm{a}\right)$ requires a revaluation of the integral in the numerator of (1.2). Normally, there would be a Lagrange interpolation of a single set of points, but this can introduce errors. An exact method involves making $\mathrm{g}(\mathrm{x})$ explicitly the straight line connecting a set of values $\mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right)$.

Line connecting the points modification.

A very simple $g(x)$ is the line connecting a group of points

$$
\begin{equation*}
g(x)=g\left(x_{i}\right)+\left(x-x_{i}\right) \frac{g\left(x_{i+1}\right)-g\left(x_{i}\right)}{x_{i+1}-x_{i}} \quad x_{i} \leq x \leq x_{i+1} \tag{3.5}
\end{equation*}
$$

Let $\mathrm{y}=\mathrm{x}-\mathrm{X}_{\mathrm{i}-1}$ so that

$$
\begin{align*}
& G\left(x_{0}\right)=0 \\
& \begin{aligned}
G\left(x_{i}+y\right) & =G\left(x_{i}\right)+g\left(x_{i}\right) \int_{0}^{t} d y+\frac{g\left(x_{i+1}\right)-g\left(x_{i}\right)}{x_{i+1}-x_{i}} \int_{0}^{t} y d y \\
& =G\left(x_{i}\right)+g\left(x_{i}\right) \times y+\frac{g\left(x_{i+1}\right)-g\left(x_{i}\right)}{x_{i+1}-x_{i}} \frac{y^{2}}{2}
\end{aligned} \tag{3.6}
\end{align*}
$$

For $\mathrm{y}=\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}-1}$ the positive first term cancels half of the negative part of the second term leading to the seemingly linear
$G\left(x_{0}\right)=0$
$G\left(x_{i+1}\right)=G\left(x_{i}\right)+\frac{g\left(x_{i}\right)+g\left(x_{i+1}\right)}{2_{i}}\left(x_{i+1}-x_{i}\right)$
The values in (3.7) are the exact values of $\mathrm{G}\left(\mathrm{x}_{\mathrm{i}}\right)$ for the $\mathrm{g}(\mathrm{x})$ that is the line connecting the points $\mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right)$. The values between these points are given exactly by (3.6).

Figure 2 Integral of line connecting points (black). Linear interpolation of this same line. The g values are $g(1)=3, g(2)=6, g(3)=5$. The integral is below the linear interpolation for a positive g ' and below it for a negative g^{\prime}. Code is in infosamp.zip.

Solving for $x(t)$ in line connecting the points modification

The value of $\mathrm{G}\left(\mathrm{x}_{\mathrm{i}}\right)$ form an ascending series of values starting at 0 and ending at 1.
$G(0)=0$
$G(i+1)=G(i)+\frac{g(i+1)+g(i)}{2}(X(i+1)-X(i))$

The subroutine LOCATE(tG(NMAX),G,NMAX,J) ..|interpolation\Locate.doc returns a value J such that $\mathrm{G}(\mathrm{J}) \leq \mathrm{t} \leq \mathrm{G}(\mathrm{J}+1)$. In the region $\mathrm{X}(\mathrm{J}) \leq \mathrm{x} \leq \mathrm{X}(\mathrm{J}+1)$
$G(x . a)=G(J)+g(J)(x-X(J))+\frac{1}{2} \frac{g(J+1)-g(J)}{X(J+1)-X(J)}(x-X(J))^{2}$
Equation (1.2) becomes
$t G(b ; a)-G(J)-g(J)(x-X(J))-\frac{1}{2} \frac{g(J+1)-g(J)}{X(J+1)-X(J)}(x-X(J))^{2}=0$
Define
$y=x-X(J)$
$C=t G(a, b)-G(J)$
$B=-g\{J\}$
$A=-\frac{1}{2} \frac{g(J+1)-g(J)}{X(J+1)-X(J)}$
So that
$A y^{2}+B y+C=0$
This is a quadratic equation with a general solution given by (..) solving\Quadratic.doc).

$$
\begin{equation*}
y=-\frac{B}{2 A} \pm \frac{\sqrt{B^{2}-4 A C}}{2 A} \tag{3.13}
\end{equation*}
$$

C is greater than or equal to zero, since locate returned $a \mathrm{~J}$ such that $\mathrm{tG}(\mathrm{a}, \mathrm{b})>G(\mathrm{~J})$. B is always less than 0 , while the sign of A is unknown.

Equation (3.13) is numerically unsuitable since it will involve large cancellations. Following (.. ${ }^{\text {solving }}$ \Quadratic.doc) rewrite (3.13) as

$$
\begin{equation*}
y=-\frac{B \mp \sqrt{B^{2}-4 A C}}{2 A} \times \frac{B \pm \sqrt{B^{2}-4 A C}}{B \pm \sqrt{B^{2}-4 A C}}=-\frac{B^{2}-B^{2}+4 A C}{2 A\left(B \pm \sqrt{B^{2}-4 A C}\right)}=\frac{-2 C}{\left(B \pm B \sqrt{1-4 A C / B^{2}}\right)} \tag{3.14}
\end{equation*}
$$

The + sign yields $y>0$. So

$$
\begin{equation*}
y=\frac{-2 C}{B\left(1+\sqrt{1-4 A C / B^{2}}\right)} \tag{3.15}
\end{equation*}
$$

The largest value of C is $G(J+1)-G(j)=(g(J+1)+g(J))(X(J+1)-X(J)) / 2$ so that the largest value of $4 A C / B^{2}$ is

$$
\begin{align*}
\frac{4 A C}{B^{2}} & =4 \times \frac{-1}{2} \frac{g(J+1)-g(J)}{X(J+1)-X(J)} \times \frac{(g(J+1)+g(J))(X(J+1)-X(J))}{2} \times \frac{1}{g^{2}\{J\}} \\
& =-\frac{g^{2}(J+1)-g^{2}(J)}{g^{2}(J)} \tag{3.16}\\
& =1-\frac{g^{2}(J+1)}{g^{2}(J)}
\end{align*}
$$

This means that the most negative value of the argument of the square root in (3.15) is
$1-4 A C / B^{2}>\frac{g^{2}(J+1)}{g^{2}(J)}$
Thus the value of y is never imaginary.

Summary

Find an arrangement of $g(J)=g\left(x_{\mathrm{J}}\right)$. Use equation (3.7) to find $\mathrm{G}(\mathrm{J})$. Then for values of t between 0 and 1 , use locate(tG(NMAX), G,NMAX.J) to find the relevant J. Use (3.11) to define the terms in (3.15) which yields $\mathrm{y}(\mathrm{t})$. Finally

$$
\begin{equation*}
x(t)=x(J)+y(t) \tag{3.18}
\end{equation*}
$$

[^0]: ${ }^{1}$ J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Methune \& Co. Ltd, London, John Wiley \& Sons Inc, New York. pp. 57-59

