Semi Infinite integrals Variable change

The following is a specific case of ImportanceSampling.docx in which a = 0 and b = ¥.

Consider the integral

 

Let

 

 

So that

There are a few restrictions on g.  First it must be positive definite. Secondly, it must be integrable over an infinite range. The third feature is not strictly necessary, but it would be nice if it were integrable to a finite value in such a way that we can easily find r(t).

The Laurent Transform

I start by looking for a function of x that is an exact derivative, because then I can integrate it.  The function  looks like r for small values of r and like 1 for large values of r.  This seems like a “nice” set of features for the integral to have.

Consider

           

On substituting this into

è 

Then the numerator in is

Note that the integral from 0 to infinity is 1. So that the relation between x and t given by is

so that simply plugging into also yields

 

Solving for r(t) yields

     

Comment

            The r values.doc will use the Laurent transform as its integration scheme.  For the forward transform the ψ(r) = exp(-r) is shown in figure 1.  For the back transform Y(p) = 1/(1+p2)2 is shown.

The integrand in is finite as tà1 and rè infinity if f(r) approaches zero at least as fast as 1/r2.  When f à 0 as exp(-x), GaussLag.doc is a competitive method.  The code in exptest.zip is set up to do 5 points

C:\temp\exptest>midpts

 NUMERICAL FULL INTEGRAL        0.9991064832699446 – 5 pts

 NUMERICAL FULL INTEGRAL        1.0000166663828580 – 50 pts

 NUMERICAL FULL INTEGRAL        1.0000001666666860 – 500 pts

 NUMERICAL FULL INTEGRAL        1.0000000016666650 – 5000 pts

 ANALYTIC FULL INTEGRAL         1.0000000000000000

Figure 1  f(r(t)) versus t for a Laurent transform of exp(-x)

Figure 2 plot of 1/(1+p(t)2)2 versus t – 20 values.  pint.zip

With a slight modification to 20 pts LTpts.zip

NUMERICAL FULL INTEGRAL        1.0001083036209220

ANALYTIC FULL INTEGRAL         1.0000000000000000

I        R                A

1    0.2564102564102564E-01   1.051939513477975   

2    0.8108108108108109E-01   1.168736303871439   

3    0.1428571428571428       1.306122448979592   

4    0.2121212121212122       1.469237832874197   

5    0.2903225806451613       1.664932362122789   

6    0.3793103448275862       1.902497027348395   

7    0.4814814814814815       2.194787379972565   

8    0.6000000000000000       2.560000000000000   

9    0.7391304347826089       3.024574669187146   

10   0.9047619047619050       3.628117913832201   

11   1.105263157894737       4.432132963988921   

12   1.352941176470589       5.536332179930798   

13   1.666666666666667       7.111111111111112   

14   2.076923076923078       9.467455621301779   

15   2.636363636363638       13.22314049586778   

16   3.444444444444445       19.75308641975309   

17   4.714285714285716       32.65306122448982   

18   7.000000000000000       64.00000000000000   

19   12.33333333333334       177.7777777777780   

20   39.00000000000014       1600.000000000011   

            As with Gauss Quadrature

The derivatives at the ends in Figure 1.5 are not equal.  This means that Richardson.doc  extrapolation can be used.

Figure 3 Point spacing for 2 and 6 point intervals.

With 21 and 7 points h2-1/21, h1 = 1/7 so

 

 F63         1.0000104981260350

 F21         1.0000973605628160

 FR          0.9999996403214373

The code for this is in LTint.zip.  The code midpts constructs the data set while the cod LTint.for reads the data set, calculates the full sum, the sum with 3*h makes the extrapolation.

 

 

 

Midpoint trap rule evaluation of the integral

for\midpts.for

      IMPLICIT REAL*8(A-H,O-Z)

      PARAMETER (N=5000)

      DATA PI/3.141592653589793D0/

C *** MID-POINT

      AINT=0

      H=1D0/N

      open(1,file='ftest.out')

      DO I=1,N

        T=H*(I-.5D0)

        R=T/(1-T)

        F=(1+R)**2*FTEST(R)

        write(1,'(2g20.6)')t,f

        AINT=AINT+F

      ENDDO

      AINT=AINT*H

      ANAL=PI/2

      PRINT*,' NUMERICAL FULL INTEGRAL ',AINT

      PRINT*,' ANALYTIC FULL INTEGRAL  ',ANAL

      READ(*,'(A)')

      END

To be specific consider the case

 

Then the integral

 

      FUNCTION FTEST(X)

      IMPLICIT REAL*8(A-H,O-Z)

      FTEST=1/(1+X*X)

      RETURN

      END

 

1.570796333461560 ß numerical 

1.570796326794900 ß analytical

Figure 4  (1+r(t))*f(r(t)) versus t

            Note that the ends are not smooth.

Assignment – Semi infinite

Evaluate both to r and to infinity the integrals

a.   

Dwight 856.08

b.    Dwight 858.653