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Standard deviation in f(x1,x2,…,xN) 
 The difference between any function of N statistically 

independent points and its true value is due to the errors 

introduced by the points. 

   1 2 1 2

1

, ,..., . ,...,
N

N i

i i

f
f x x x f x x x

x





  




 (1.1) 

The difference squared is 
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In addition, its expectation value is 
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The uncorrelated values for i  j are always assumed to be 

zero in the statistical ensemble.  It is this assumption that 

enables us to arrive at a reasonable approximation to the 

ensemble average using a single element of the ensemble.  

Using the sum of the function differences 

The term in the sum in (1.3) can be found by leaving out the 

i'th data point. That is 
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This yields 
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Equation (2.2) is a sum over the result of omitting each term in 

turn.  If a minimization method such as the Amoeba or Nlfit 

was used to find f it needs to be rerun with the point omitted.  

If Lagrange interpolation was used to find f, the interpolation 

needs to be made again with the point omitted. Since the loss 

of a single point does not move Nlfit or the Amoeba far from 

equilibrium, the new value of f – with a missing point - can 

usually be found with only a few steps from the original – 

with all points.  In the case of the Amoeba the full output array 

should be used as input for each to the new sets.  Convergence 

should be relatively rapid since one is nearly at the minimum 

in each case.  As long as special points such as the ends are 

removed, it is always possible to "randomly" select M of the 

points and then to multiply by N/M to arrive at the final error 

estimate. 

Replacing the points 

 If the distribution of the points xi is known is possible 

to directly estimate 
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This is done by selecting all N x's as the expected values + a 

random number with a Gaussian distribution with the standard 

deviation of the point xi.  An easy means of making this 

selection is given below.  It requires at least M=10 to cover the 

odd chances and most references recommend 25 to 30.  Note 

that in this case the values are averaged, not summed as in the 

previous case. 

 
Psuedo Random numbers 
 Random numbers are not wanted.  What is desired is 

a set of completely reproducible numbers that are the same on 

all computers and in both C and Fortran.  In addition, it must 

be true that the numbers give all averages the same as would 

be given by actual random numbers.  In practice the numbers 

should be re-initialized with the numbers needed to recreate 

the desired set written out as 

17894561  3678991  

18345899 234567899 

... 

In this way, when the code bombs after 23 hours of running, 

the situation just before the bomb can be recreated by simply 

entering these numbers. 

 With this many random numbers, the "randomness" 

of the set can be a problem for some calculations
1
.  The 

method used here, first suggested by MacLaren and 

Marsaglia
2
, is to insert numbers into a table with a 

multiplicative congruential method with one multiplier and 

seed and to extract them from the table with a multiplicative 

congruential method with a different multiplier and seed.  

random.for contains the common 

COMMON/RAN/IX,IY,ITAB(128) 

random.c random.h trandom.c 

The file random.h contains 

 

struct {int ix,iy,itab[128];} ran;  

int rseed(int ix,int iy); 

double rndmf(); 

 

The seeds are ix and iy.  The random number set is initialized 

by calling rseed(ix,iy).  This call causes 128 numbers to be fed 

into the table itab[128] with one random number generator.  

The call x=rndmf() gives a random number base on ix,iy and 

itab, between 0 and 1.  It selects this by advancing ix and iy, 

pulling a value from a randomly selected table entry and 

replacing that with a new value. 

                                                         
1
 R. L. Coldwell, "Correlational Defects in the Standard IBM 

360 Random Number Generator and the Classical Ideal Gas 

Correlation Function", J. Computational Phys. 14, 223 

(1974). 
2
 M. D. MacLaren and G. Marsaglia, J. Assoc. Comput. Mach. 

12 (1965),83 
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 This can be re-initialized by printing out ix and iy 

and then calling rseed.  This wastes 128 random numbers, but 

gives a completely determined new set of random numbers. 

Gaussian distribution
3
 

 Rgauss=-6; 

 For(i=0;i<12;++i){Rgauss+=rndmf();} 
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Thus  

22 2 1 1 1

3 4 12
f f      (4.2) 
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 This means that the above sum is 0 +- 1.  If I want to 

produce a peak of height P = 36 +- 6 with a Gaussian 

distribution on the six.  I simply take  
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Simple Monte Carlo Integration 

 ( )
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a
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Change variables such that x=a+(b-a)*x'.  dx = (b-a)dx' 
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now select x positions uniformly and randomly between 0 and 

1 and average them so that 
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"obvious" error analysis 

The expected error in Nf   can be estimated by 

considering each random selection as an independent 

estimator of Nf   and then averaging the squares of the 

differences to yield 

                                                         
3
 J. M Hammersley and D. C. Handscomb, Monte Carlo 

Methods, John Wiley (1964) p.39 
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as the rms difference between h   and any single 

estimator.  The expectation value of the sum is then N times 

N so that the deviation in the sum is  
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In addition, the expected error in the sum is 

 sum NN    (6.3) 

while the expected error in the average is 
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so that  
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"more elegant" error analysis 
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Then 

1 1

1 1

1 1

1 1

1
1

1 1 1
1

1 1 1 1 1
1 1 . .

N N

i iN no k
i i

i k

N N

i i

i i
i k

N N

i i k

i i

f f f f
N

N
N

f f
N N N

f f f h o
N N N N N

 


 


 

  
 
 

 

 
   

 

   
        

   

 

 

 

(7.2) 

Finally 
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Then using equation (3.1) 
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 In general, we frequently do not really want an 

integral, but rather an expectation value.  That is the quantity 

of interest is usually 
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which can easily be seen to have less error than that indicated 

by the two integrals.  For example if neither the numerator or 

denominator samples a position where  is large, the ration of 

the two still has some meaning.  Especially is this true if 

H/ is on the order of -9, while  itself varies by many 

orders of magnitude.  We begin the error estimate by 

calculating the change in <H> caused by leaving out a single 

one of the Monte Carlo points. 
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and it looks basically the same as with the integral except that 

instead of a -1 in the denominator there is a -j
2
/wj which is 

assumed to be small compared to the sum over all terms so 

that we expand it and hold only those terms of order 
2
/w/sum 

to find. 
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and of course the total error squared in the expectation value 

of H is the sum of the squares of these terms so that 
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or in the limit Nvery large so that we can make the sums 

integrals. 
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and we notice two items of interest.   

A.  If  is an eigenfunction, the second term in the integral is 

zero. and there is no Monte Carlo error in the estimate of the 

eigenvalue. 

B.  The guiding function w is still present, even in the infinite 

limit (note however that (1/N) does drive the error slowly to 

zero even in this limit.  The best choice of w will be one that 

most closely mimics the second term which is the positive 

definite miss
2
 of the eigenfunction, but in general is merely the 

are which contributes to those parts different from the average 

expectation value of an operator.   

Capping an infinity. 

 A common integrand of interest is 1/rij where it is not 

normally appropriate to use ri as the location from which to 

sample the integrand. 

We do know however that for short distances in the rij space 

the integrand is 
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we want to replace the 1/rij by an integrand with the same 

integral, but without the singularity.  For small , assume that 

 is constant so that the integral is  
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which implies that 1/rij should be replaced by 1/(2/3) for any 

rij less than  

Consider a 3d integral over all space 
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Problem 1 – Monte Carlo 

 Calculate <1/rij> and <(1/rij)
2
> for electrons in 1s 

and 2s states hydrogen like orbitals of helium. 

 (r1,r2)=exp(-2r1)(2-r2)exp(-r2). 

For p orbitals 

  (r1,r2)=exp(-2r1)x2exp(-r2) 

The choice of g can become involved.  What we want is a 

crude estimate along with an estimate of the standard 

deviation.  Note first that a crude estimate of <H> in  (8.4) 

is sufficient.  Don’t bother to calculate the error for the 

first 10000 points. 

Then Use 8.4 for the rest of the million points.  Watch out 

for the infinity, it needs to be capped. 

 

Problem 2 – Trap rule 

 Evaluate <1/rij> and <(1/rij)
2
> for electrons in 1s 

and 2s states of  helium.  Do the phi1, phi2 and theta1 and 

theta2 integrals by mid-point trap rule or by inspection.  

Use the Laurent transform followed by mid-point trap to 

evaluate the integrations in r1 and r2.  
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