
Errinfun.doc 2/13/2017 1/3

Standard deviation in f(x1,x2,…,xN)
 The difference between any function of N statistically

independent points and its true value is due to the errors

introduced by the points.

   1 2 1 2

1

, ,..., . ,...,
N

N i

i i

f
f x x x f x x x

x





  




 (1.1)

The difference squared is

    
2

1 2 1 2

1, 1

, ,..., . ,...,
N

N i j

i j i j

f f
f x x x f x x x x

x x
 

 

 
  

 


 (1.2)

In addition, its expectation value is

    
22

1 2 1 2

2

2

1, 1 1

, ,..., . ,...,f N

N N

i j i

i j ii j i

f x x x f x x

f f f
x x x

x x x



  
  

  

   
   

   
 

 (1.3)

The uncorrelated values for i  j are always assumed to be

zero in the statistical ensemble. It is this assumption that

enables us to arrive at a reasonable approximation to the

ensemble average using a single element of the ensemble.

Using the sum of the function differences

The term in the sum in (1.3) can be found by leaving out the

i'th data point. That is

 
   1

1 1

...
,..., ,... ,..., ,...

N

i i N i N

i

f x x
x f x x x f x nox x

x



 



 (2.1)

This yields

    
22

1 1

1

,..., ,... ,..., ,...
N

f i N i N

i

f x x x f x nox x


 

(2.2)

Equation (2.2) is a sum over the result of omitting each term in

turn. If a minimization method such as the Amoeba or Nlfit

was used to find f it needs to be rerun with the point omitted.

If Lagrange interpolation was used to find f, the interpolation

needs to be made again with the point omitted. Since the loss

of a single point does not move Nlfit or the Amoeba far from

equilibrium, the new value of f – with a missing point - can

usually be found with only a few steps from the original –

with all points. In the case of the Amoeba the full output array

should be used as input for each to the new sets. Convergence

should be relatively rapid since one is nearly at the minimum

in each case. As long as special points such as the ends are

removed, it is always possible to "randomly" select M of the

points and then to multiply by N/M to arrive at the final error

estimate.

Replacing the points

 If the distribution of the points xi is known is possible

to directly estimate

    
22

1 2 1 2

1

1
ˆ ˆ ˆ, ,..., . ,...,

M

f N N

i

f x x x f x x x
M




 
(3.1)

This is done by selecting all N x's as the expected values + a

random number with a Gaussian distribution with the standard

deviation of the point xi. An easy means of making this

selection is given below. It requires at least M=10 to cover the

odd chances and most references recommend 25 to 30. Note

that in this case the values are averaged, not summed as in the

previous case.

Psuedo Random numbers
 Random numbers are not wanted. What is desired is

a set of completely reproducible numbers that are the same on

all computers and in both C and Fortran. In addition, it must

be true that the numbers give all averages the same as would

be given by actual random numbers. In practice the numbers

should be re-initialized with the numbers needed to recreate

the desired set written out as

17894561 3678991

18345899 234567899

...

In this way, when the code bombs after 23 hours of running,

the situation just before the bomb can be recreated by simply

entering these numbers.

 With this many random numbers, the "randomness"

of the set can be a problem for some calculations
1
. The

method used here, first suggested by MacLaren and

Marsaglia
2
, is to insert numbers into a table with a

multiplicative congruential method with one multiplier and

seed and to extract them from the table with a multiplicative

congruential method with a different multiplier and seed.

random.for contains the common

COMMON/RAN/IX,IY,ITAB(128)

random.c random.h trandom.c

The file random.h contains

struct {int ix,iy,itab[128];} ran;

int rseed(int ix,int iy);

double rndmf();

The seeds are ix and iy. The random number set is initialized

by calling rseed(ix,iy). This call causes 128 numbers to be fed

into the table itab[128] with one random number generator.

The call x=rndmf() gives a random number base on ix,iy and

itab, between 0 and 1. It selects this by advancing ix and iy,

pulling a value from a randomly selected table entry and

replacing that with a new value.

1
 R. L. Coldwell, "Correlational Defects in the Standard IBM

360 Random Number Generator and the Classical Ideal Gas

Correlation Function", J. Computational Phys. 14, 223

(1974).
2
 M. D. MacLaren and G. Marsaglia, J. Assoc. Comput. Mach.

12 (1965),83

../../optimization/amoeba/AMOEBA.htm
../../../nlfit/NLFIT.htm
../../interpolation/lagrange/Interpolation.htm
../for/RANDOM.FOR
../../optimization/amoeba/cpp/random.c
../../optimization/amoeba/cpp/random.h
../../optimization/amoeba/cpp/trandom.c

Errinfun.doc 2/13/2017 2/3

 This can be re-initialized by printing out ix and iy

and then calling rseed. This wastes 128 random numbers, but

gives a completely determined new set of random numbers.

Gaussian distribution
3

 Rgauss=-6;

 For(i=0;i<12;++i){Rgauss+=rndmf();}

1

0

1
2 2

0

1

2

1

3

f xdx

f x dx

 

 





(4.1)

Thus

22 2 1 1 1

3 4 12
f f      (4.2)

or

 
12

1

12 6 6 1
i

f rndmf


    (4.3)

 This means that the above sum is 0 +- 1. If I want to

produce a peak of height P = 36 +- 6 with a Gaussian

distribution on the six. I simply take

 
12

1

36 6* 6
i

P rndmf


 
    

 
 (4.4)

Simple Monte Carlo Integration

 ()

b

a

f f x dx   (5.1)

Change variables such that x=a+(b-a)*x'. dx = (b-a)dx'

   
1

0

()f b a f a b a x dx     (5.2)

now select x positions uniformly and randomly between 0 and

1 and average them so that

  
 

1

(1.)

1
()

i

N

i

i

x Rand

b a
f f a b a x

N N 




   




L (5.3)

"obvious" error analysis

The expected error in Nf  can be estimated by

considering each random selection as an independent

estimator of Nf  and then averaging the squares of the

differences to yield

3
 J. M Hammersley and D. C. Handscomb, Monte Carlo

Methods, John Wiley (1964) p.39

  

 

 

22

1

2

1

2

1 1

2 2 2

2 2

1
()

1
()

2
() 1

2

N

N i N

i

N

i

i

N N
N N

i

i i

N N N

N N

f b b a x f
N

f a b a x
N

f f
f a b a x

N N

h f f

h h






 

     

  

   
   

       

    





 
 (6.1)

as the rms difference between h  and any single

estimator. The expectation value of the sum is then N times

N so that the deviation in the sum is

2 2

sum NN  (6.2)

In addition, the expected error in the sum is

 sum NN  (6.3)

while the expected error in the average is

sum N

N
N N

 
   (6.4)

so that

2 2

N

f f
f f

N

    
    (6.5)

"more elegant" error analysis

1 1

1 1

1

N N

i iN no k
i i

i k

f f f f
N N 



  


  (7.1)

Then

1 1

1 1

1 1

1 1

1
1

1 1 1
1

1 1 1 1 1
1 1 . .

N N

i iN no k
i i

i k

N N

i i

i i
i k

N N

i i k

i i

f f f f
N

N
N

f f
N N N

f f f h o
N N N N N

 


 


 

  
 
 

 

 
   

 

   
        

   

 

 

 

(7.2)

Finally

 
1

1 1 1N
k

i kN no k
i

f
f f f f f

N N N N

 
      

 
 (7.3)

Then using equation (3.1)

 

 

22

2
1

2

2

2 2 2
1 1 1

22

1

21
1

1

N

kf
k

N N N

k k

k k k

f f
N

f f
f f

N N N

f f
N




  

 

 
   

 

 



   (7.4)

..\..\optimization\amoeba\for\trandom.f ..\for\RANDOM.FOR

Expectation value error estimates.

../../optimization/amoeba/for/trandom.f
../for/RANDOM.FOR

Errinfun.doc 2/13/2017 3/3

 In general, we frequently do not really want an

integral, but rather an expectation value. That is the quantity

of interest is usually

1

2 2

1

/

/

i N

i i ii

i N

i ii

H wH d
H

d w













  
  

 



 
(8.1)

which can easily be seen to have less error than that indicated

by the two integrals. For example if neither the numerator or

denominator samples a position where  is large, the ration of

the two still has some meaning. Especially is this true if

H/ is on the order of -9, while  itself varies by many

orders of magnitude. We begin the error estimate by

calculating the change in <H> caused by leaving out a single

one of the Monte Carlo points.

  

     
  

  

2

2
2 2

2
2 2

2
2

2

/ /

1 /

/

1 / /

/ / / / (/)

/ /
(/)

i i i j j j

j

j j

j j j

j j J j

j j j j j j j

j j j j j

j j

H w H w
H

Norm w Norm

Norm H H w
H

Norm

w Norm w Norm

H w Norm H w Norm O w Norm

H w H w
O w Norm

Norm


   

  


   
   

    

         

     
  



(8.2)

and it looks basically the same as with the integral except that

instead of a -1 in the denominator there is a -j
2
/wj which is

assumed to be small compared to the sum over all terms so

that we expand it and hold only those terms of order 
2
/w/sum

to find.

  
2

/

/

j j j j

j

j j

w H H
H

w


     
  


(8.3)

and of course the total error squared in the expectation value

of H is the sum of the squares of these terms so that

   

 

2 2

2

2
2

/

/

j j j j

H

j j

w H H

w

  

     







(8.4)

or in the limit Nvery large so that we can make the sums

integrals.

 

 

22

2

2
2

(1/ ())

H

w x H H d

N d






 

    








(8.5)

and we notice two items of interest.

A. If  is an eigenfunction, the second term in the integral is

zero. and there is no Monte Carlo error in the estimate of the

eigenvalue.

B. The guiding function w is still present, even in the infinite

limit (note however that (1/N) does drive the error slowly to

zero even in this limit. The best choice of w will be one that

most closely mimics the second term which is the positive

definite miss
2
 of the eigenfunction, but in general is merely the

are which contributes to those parts different from the average

expectation value of an operator.

Capping an infinity.

 A common integrand of interest is 1/rij where it is not

normally appropriate to use ri as the location from which to

sample the integrand.

We do know however that for short distances in the rij space

the integrand is

2 2

0

1
(, ,)ij i j ij ij

ij

I r r r r dr
r



  (9.1)

we want to replace the 1/rij by an integrand with the same

integral, but without the singularity. For small , assume that

 is constant so that the integral is

2 2 2 2

0 0

2
2 2

3

0 0

1
(, , 2 / 3) (, , 2 / 3)

1 / 2 3
/

2/ 3

i j ij ij i j ij ij

ij

ij ij ij ij

ij

I r r r cdr r r r dr
r

c r dr r dr
r

 

 

 





   

   

 

 

(9.2)

which implies that 1/rij should be replaced by 1/(2/3) for any

rij less than 

Consider a 3d integral over all space

 
1 1

3 2

0 0 0

4 ()

2 1; 2

f d rf r d d r f r dr  

   



  

  

   
(10.1)

Change variables to

0 0

() / ()

r

y g z dz g z dz



   (10.2)

Problem 1 – Monte Carlo

 Calculate <1/rij> and <(1/rij)
2
> for electrons in 1s

and 2s states hydrogen like orbitals of helium.

 (r1,r2)=exp(-2r1)(2-r2)exp(-r2).

For p orbitals

 (r1,r2)=exp(-2r1)x2exp(-r2)

The choice of g can become involved. What we want is a

crude estimate along with an estimate of the standard

deviation. Note first that a crude estimate of <H> in (8.4)

is sufficient. Don’t bother to calculate the error for the

first 10000 points.

Then Use 8.4 for the rest of the million points. Watch out

for the infinity, it needs to be capped.

Problem 2 – Trap rule

 Evaluate <1/rij> and <(1/rij)
2
> for electrons in 1s

and 2s states of helium. Do the phi1, phi2 and theta1 and

theta2 integrals by mid-point trap rule or by inspection.

Use the Laurent transform followed by mid-point trap to

evaluate the integrations in r1 and r2.

Wave function details are in ..\..\diffeqns\WAVEFUN.htm

../../diffeqns/WAVEFUN.htm

