The integrals are

$$
\begin{align*}
& A u p=\int_{x_{0}}^{x_{0}+h} A I(t) d t  \tag{1.1}\\
& A d n=\int_{x_{0}}^{x_{0}-h} A I(t) d t=-\int_{x_{0}-h}^{x_{0}} A I(t) d t \tag{1.2}
\end{align*}
$$

The value of Al at the midpoint is

$$
\begin{equation*}
\left.A I\left(x_{0}+h / 2\right)=A I\left(x_{0}\right) \pm(h / 2) \frac{d A I}{d x}\right)_{x_{0}} \tag{1.3}
\end{equation*}
$$

Where the plus is for Aup and the minus is for And.

$$
\begin{align*}
\text { Aup } & =h A I\left(x_{0}+h / 2\right)+O\left(h^{3}\right) \\
& \left.=h\left(A I\left(x_{0}\right)+(h / 2) \times \frac{d A I}{d x}\right)_{x_{0}}\right)+O\left(h^{3}\right) \tag{1.4}
\end{align*}
$$

$$
A d n=h A I\left(x_{0}-h / 2\right)+O\left(h^{3}\right)
$$

$$
\begin{equation*}
\left.=-h\left(A I\left(x_{0}+h\right)-(h / 2) \times \frac{d A I}{d x}\right)_{x_{0}+h}\right)+O\left(h^{3}\right) \tag{1.5}
\end{equation*}
$$

The $h$ values in (1.4) and (1.5) are both positive. Define $x_{0}+h$ to be $x_{1}$, and $h_{1}=-h$ so that (1.5) becomes

$$
\begin{equation*}
\left.A d n=h_{1}\left(A I\left(x_{1}\right)+\left(h_{1} / 2\right) \times \frac{d A I}{d x}\right)_{x_{1}}\right)+O\left(h^{3}\right) \tag{1.6}
\end{equation*}
$$

Define

$$
h_{B E}=\frac{E n d c-B e g c}{N}(1.7)
$$

$$
\begin{equation*}
\left.\int_{B e g c}^{E n d c} A I(t) d t=\sum_{i=0}^{N-1} \int_{B e g c+i h}^{B e g c+(i+1) h} A I(t) d t=h_{B E} \sum_{i=0}^{N-1}\left(A I\left(B e g c+i h_{B E}\right)+\left(h_{B E} / 2\right) \times \frac{d A I}{d x}\right)_{B e g c+i h_{B E}}\right)+N O\left(h^{3}\right) \tag{1.8}
\end{equation*}
$$

