2
5
Lagrange interpolation 1. 3/16/2017

The Lagrange Polynomial (Press Chapter 3)

If we know a function at N distinct data points and if we require that the polynomial approximation pn(x) be equal to f(x) at all N points. The N constants in the expansion

[image: image1.wmf]1

1

0

()

iN

i

Ni

i

pxcx

=-

-

=

=

å

(1.1)

are uniquely determined by the N equations

[image: image2.wmf]231

0112131111

231

0122232122

231

0132333133

231

0142434144

231

01231

...

N

N

N

N

N

N

N

N

N

NNNNNN

ccxcxcxcxf

ccxcxcxcxf

ccxcxcxcxf

ccxcxcxcxf

ccxcxcxcxf

-

-

-

-

-

-

-

-

-

-

+++++=

+++++=

+++++=

+++++=

+++++=

K

K

K

K

K

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.2)

This implies that there is one and only one polynomial of degree N-1 which passes through the N data points. The Lagrange polynomial which accomplishes can almost be written by inspection. The Lagrange polynomials are defined with respect to x and the data abscissa xk and xj as

[image: image3.wmf](

)

(

)

(

)

1

L1,,

jN

j

k

j

jk

jk

xx

xkN

xx

=

=

¹

-

==

-

Õ

K

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.3)

One term is always left out of the product that covers N values in which x always appears once. Thus it is easy to see that Lk is a polynomial of degree N-1 and that sums of the Lk values times constants will also be of degree N-1.

 The value of Lk(xm(k) where xm(k is any of the data points other than the k’th one will have a zero in the numerator for the j=m term
[image: image4.wmf](

)

(

)

mm

mk

xx

xx

-

-

 so that Lk(xm(k)=0.

The value of Lk(xm=k) is quite different. Each term in the product is of the form
[image: image5.wmf](

)

(

)

1

jm

jk

xx

xx

-

=

-

 and by construction the dangerous term with xj=xk has been left out so that Lk(xm=k)=1. Thus the polynomial desired is

[image: image6.wmf](

)

(

)

(

)

11

()

NN

nkkkk

kk

pxfLxfxLx

==

==

åå

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.4)

Coding the Lagrange Polynomial

A quotation from Press “It is not terribly wrong to implement the Lagrange formula straightforwardly, but it is not terribly right either”
 gives fair warning that a few extra computer steps are involved in coding the above in directly and that many people will say that it lacks elegance. I really think that he is referring to the possibility of making the division at the step where ANUM and DEN are calculated below.
Uelag.for
 SUBROUTINE UELAG(NL,JB,X,ALAG,XDAT)

 IMPLICIT REAL*8 (A-H,O-Z)

 DIMENSION ALAG(NL),XDAT(*)

 DO M=1,NL

 ANUM=1

 DEN=1

 DO J=1,NL

 IF(J.NE.M)THEN

 ANUM=ANUM*(X-XDAT(J+JB))

 DEN=DEN*(XDAT(M+JB)-XDAT(J+JB))

 ENDIF

 ENDDO

 ALAG(M)=ANUM/DEN

 ENDDO

 RETURN

 END
uelag.c
#include <stdio.h>

void uelag(int nl,double x,int jb,double alag[],double xdat[])

{ int m,j;

 double anum,den;

 for (m = 0; m < nl; ++m){

 anum=1;

 den=1;

 for (j = 0; j < nl; ++j){

 if (j != m){

 anum=anum*(x-xdat[j+jb]);

 den=den*(xdat[m+jb]-xdat[j+jb]);}}

 alag[m]=anum/den;}}
Coding the full Polynomial

poly.for
 FUNCTION POLY(NL,X)

 IMPLICIT REAL*8 (A-H,O-Z)

 DIMENSION XP(:),DP(:),ALAG(:)

 COMMON /PASS/IW ((1 writes, 0 does not) set in main
 SAVE NC,NDAT,XP,DP (These values are saved
 DATA NC/0/

 IF(NC.EQ.0)THEN

 NC=1 (this part of the code is called only on the first pass
 OPEN(1,FILE='loren.out') (loren.out was made by the bli routine above
 NDAT=NLINES(1) (line counting routine
 ALLOCATE (XP(NDAT),DP(NDAT),ALAG(NL))
 DO I=1,NDAT

 READ(1,*)XP(I),DP(I)

 ENDDO

 CLOSE(1)

 ENDIF

 CALL LOCATE(X,XP,NDAT,J)

 JB=MAX(0,MIN(NDAT-NL,J-NL/2)) (This is the hard part
 IF(IW.EQ.1)THEN

 PRINT*,XP(JB+1),X,XP(JB+NL)

 PRINT*,DP(JB+1),DP(JB+NL)

 ENDIF

 CALL UELAG(NL,JB,X,ALAG,XP) (calculates NL Lagrange polynomials
 FINT=0

 IF(IW.EQ.1)THEN

 PRINT*,' I ALAG DP'

 DO I=1,NL

 PRINT*,I,ALAG(I),DP(I+JB)

 ENDDO

 ENDIF

 DO I=1,NL

 FINT=FINT+ALAG(I)*DP(I+JB) (equation (1.4)

 ENDDO

 POLY=FINT

 RETURN

 END
poly.c
double polyc(int nl,double x)

{double fint;

 static double *xi,*fi,*alag; (equivalent to Fortran Save
 static int n=0;

 extern int iw; (equivalent to Fortran common

 int i,jb;

 FILE *fp; (saves file information

 if(n==0){

 fp = fopen("loren.out","r"); (the “r” is for read only

 if(fp == NULL){printf(" cannot open file loren.out \n"); (C allowing for error

 return 0.0;}

 n=linecount(fp); (similar to Fortran routine

 xi = (double *) calloc(n, sizeof(double)); (allocation statements

 fi = (double *) calloc(n, sizeof(double));

 alag = (double*) calloc(nl, sizeof(double));

 for (i=0;i<n;i++)fscanf(fp, "%lg %lg", &xi[i],&fi[i]);

 fclose(fp);

 }

 jb=locate(x,xi,n);

 if(iw == 1)printf("jb n %d %d \n",jb,n);

 jb=jb-nl/2+1; // note the +1

 if(jb > n-nl)jb=n-nl; (Fortran values are from 1 to n, C values are from 0 to n-1

 if(jb < 0)jb=0; (This is the same zero as fortran because the nl loop gos 0 to nl-1
 if(iw == 1)printf("final jb %d \n",jb);

 if(iw == 1) printf("xim x xip %lg %lg %lg \n",xi[jb],x,xi[jb+nl-1]);

 uelag(nl,x,jb,alag,xi);

 fint = 0;

 if(iw==1){

 printf("polyc x= %lg \n",x);

 for (i=0;i<nl;++i)printf("i %d xi[i+jb] %lg alag[i] %lg fi[i+jb] %lg \n",i,xi[i+jb],

 alag[i],fi[i+jb]);}

 for (i = 0; i < nl; ++i){

 fint += alag[i] * fi[i+jb];}

 return fint;}
Main code

TLAG.FOR
 IMPLICIT REAL*8 (A-H,O-Z) (Physics wants these digits
 COMMON /PASS/IW (controls the writing
 IW=1

 PRINT*,'ENTER THE NUMBER OF LAGRANGE TERMS'

 READ(*,*)NL

5 CONTINUE

 PRINT*,'ENTER X OR -10000 TO GO TO NEXT SECTION'

 READ(*,*)X

 IF(X.EQ.-10000)GOTO 20

 F=POLY(NL,X)

 Y=ALORENT(X)

 PRINT*,'FINT ALORENT',F,Y (This tests a few points and writes everything out
 GOTO 5

20 CONTINUE

 OPEN(2,FILE='ERRF.OUT') (unit 1 may still not be clear
 IW=0 (turns off the writes
 H=10/5D2
 DO I=500,1,-1

 X=-(I*H)**3 (primitive log scale, note that 500 values are calculated
 Y1=POLY(NL,X)

 Y2=ALORENT(X)

 ERR=ABS(Y1-Y2)

 WRITE(2,'(1P,2E15.6)')X,ERR

 ENDDO

 DO I=0,500 (a second 501 values
 X=(I*H)**3

 Y1=POLY(NL,X)

 Y2=ALORENT(X)

 ERR=ABS(Y1-Y2)

 WRITE(2,'(1P,2E15.6)')X,ERR

 ENDDO

 CLOSE(2)

 CALL FSYSTEM('GPLOT LOREN.OUT ERRF.OUT')(make it easy to look for errors
 END

Mathematical Information

The point of this section is that the inclusion of data further and further from the point x does not enable more and more accurate evaluation of f(x). Hoever, the inclusion of more and more data near x does guarantee an f(x) of any arbitrary accuracy.

Taylor’s formula with remainder
states that with w=z-zm any of our usual functions in physics can be written as
[image: image7.wmf]f

z

m

f

z

w

N

f

w

m

m

m

N

m

N

N

(

)

!

(

)

(

)

!

(

)

(

)

=

+

+

=

+

+

å

1

1

1

0

1

1

x

 where (is some value in the interval between z and zm. Typically the high derivatives of a function eventually begin to rise faster than the (N+1)! in the above equation. Note that a polynomial of order xN has derivatives N xN , N(N-1) xN-1, ... ,N! , . Thus eventually the coefficient of w(N+1) becomes so large that the series is asymptotic in its convergence. (at first gets better as N becomes larger, than gets worse).

The testing codes

tlag.zip tlagc.zip tlag.wpj ctlag.wpj
The data fitted was generated in ..\LIFun.doc by ..\bli.wpj (..\cbli.wpj) with an initial 16 points followed by 128 points.

[image: image8.png]DN

000 =800

|
-600 -

| | | |
0 200 400 600 800 1000

Figure 1 Two terms (linear interpolation) is best at the extremes, but 4 terms are almost as good

Too many terms can be spectacularly wrong.
[image: image9.png]loren.out -
err2.out
errd.out
err8.out
errl6.out

=30

=20

-10

Figure 2 The 8 term and 16 term approximations are about the same in the mid region.

Four terms are better than 2 by about a factor of10. Eight terms and 16 give about the same results. The mid-range approaches the accuracy of the data.

[image: image10.png]10 1

1= loren.out
errl6.out
0.1 errfl6.out -

Figure 3 err16 is from the tlagc (C), errf16 is from tlag (FORTRAN).
Assignment

1. Some of the final error is due to the fact that the precision in loren.out was designed for plotting, rather than interpolation. Try increasing the number of digits to see the effect.
2. In the bli, the error is determined by ERRT=(ERR(I)+ERR(I+1))*ABS(XI(I+1)-XI(I)). The results in figure 1 imply that the spacing should be more uniform than this gives. Take the abs of the interval size to a power and look at the result.
3. Change the function to a Gaussian.

4. The integral
[image: image11.wmf](

)

0

sin

()

x

t

Sixdt

t

=

ò

is listed in Jahnke and Emde and other places for values between x=1 and x=130. Write a fast but crude code to use these with Lagrange interpolation to give this function to between three and four digit accuracy. Extrapolate to zero and see what happens.

�Numerical Recipes in C, W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Cambridge, New York 1992 p. 108

�Advanced Calculus, Angus E. Taylor, Ginn and Co. (1955) p.112

_1548731449.unknown

_1548731451.unknown

_1548731453.unknown

_1550410622.unknown

_1548731452.unknown

_1548731450.unknown

_1548731448.unknown

_851579309.unknown

