Folders

DiffEq \backslash SeqnIn1d(3).docx

In the folders under 1-d the potential, $\mathrm{V}(\mathrm{x})$, is independent of time so that $\psi(x, t, E)=\phi(x) \exp \left(-i \frac{E t}{\hbar}\right)(1)$
For

$$
\begin{align*}
& \phi(x)=\left\{\begin{array}{c}
\exp \left(p_{p}(x)\right) \\
\exp \left(-p_{m}(x)\right)
\end{array}\right. \tag{2}\\
& z_{p}(x)=\frac{d p_{p}(x)}{d x} \tag{3}\\
& z_{m}(x)=\frac{d p_{m}(x)}{d x}
\end{align*}
$$

The Schrodinger equation, .. ${ }^{\text {SchrodingerEqn.docx (3) in Hartree units is }}$
$-\frac{\nabla^{2} \phi(x)}{2}+V(x) \phi(x)=E_{H} \phi$
$\nabla \phi(x)=\left\{\begin{array}{c}\frac{d p_{p}(x)}{d x} \exp \left(p_{p}(x)\right) \\ -\frac{d p_{m}(x)}{d x} \exp \left(-p_{m}(x)\right)\end{array}\right.$
$\nabla^{2} \phi(x)=\left\{\begin{array}{c}\left(\frac{d^{2} p_{p}(x)}{d x^{2}}+z_{p}^{2}(x)\right) \exp \left(p_{p}(x)\right) \\ \left(-\frac{d^{2} p_{m}(x)}{d x^{2}}+z_{m}^{2}(x)\right) \exp \left(-p_{m}(x)\right)\end{array}\right.$
$\nabla^{2} \phi(x)=\left\{\begin{array}{c}\left(\frac{d z_{p}(x)}{d x}+z_{p}^{2}(x)\right) \exp \left(p_{p}(x)\right) \\ \left(-\frac{d z_{m}(x)}{d x}+z_{m}^{2}(x)\right) \exp \left(-p_{m}(x)\right)\end{array}\right.$
5)

So that (4) becomes

$$
\begin{align*}
& -\frac{1}{2}\left(\frac{d z_{p}(x)}{d x}+z_{p}^{2}(x)\right) \exp \left(p_{p}(x)\right)+V(x) \exp \left(p_{p}(x)\right)=E_{H} \exp \left(p_{p}(x)\right) \\
& -\frac{1}{2}\left(-\frac{d z_{m}(x)}{d x}+z_{m}^{2}(x)\right) \exp \left(p_{m}(x)\right)+V(x) \exp \left(p_{m}(x)\right)=E_{H} \exp \left(p_{m}(x)\right) \tag{6}
\end{align*}
$$

Cancelling the common exponential factors
$\frac{d z_{p}(x)}{d x}=-\left(2\left(E_{H}-V(x)\right)-z_{p}^{2}(x)\right)$
$\frac{d z_{m}(x)}{d x}=\left(2\left(E_{H}-V(x)\right)-z_{m}^{2}(x)\right)$
Bob *** stop

For V and z independent of x , both lines in (7) are solved by $z^{2}(x)=2\left(V(x)-E_{H}\right)$
$p(x)=\int z(x) d x$

For $\mathrm{V}>\mathrm{E}_{\mathrm{H}} \quad \longrightarrow \mathrm{V}$
The two $\quad E_{H}$ solutions
are
$z=\sqrt{2\left(V-E_{H}\right)}$
$z=-\sqrt{2\left(V-E_{H}\right)}$
$\phi(x)=A_{C} \exp \left(x \sqrt{2\left(V-E_{H}\right)}\right)+B_{C} \exp \left(-x \sqrt{2\left(V-E_{H}\right)}\right)$

For $\mathrm{E}_{\mathrm{H}}>\mathrm{V}$
The two
Solutions

are
$z=i \sqrt{2\left(V-E_{H}\right)}$
$z=-i \sqrt{2\left(V-E_{H}\right)}$
$\phi(x)=C_{C} \exp \left(x \sqrt{2\left(V-E_{H}\right)}\right)+D_{C} \exp \left(-x \sqrt{2\left(V-E_{H}\right)}\right)$
The -iEt in (1) means that the positive exponents represent probability moving from left to right, and the negative exponents represent probability moving from right to left. The coefficients A_{c}, B_{c}, C_{c}, and D_{c} are arbitrary complex coefficients that can be used to make the wave function and its derivative continuous at the point where V_{1} becomes V_{2}. The four potentials are given in
Potential docx

The fourth potential is a visual fit of a harmonic oscillator potential to the barrier potential.
The potential near any minimum, $\mathrm{dV}\left(\mathrm{x}_{\mathrm{min}}\right) / \mathrm{dx}=0$ can be expanded as.
$\left.V(x)=V\left(x_{\min }\right)+\frac{1}{2}\left(x-x_{\min }\right)^{2} \frac{d^{2} V\left(x_{\min }\right)}{d x^{2}}\right)_{x_{\text {min }}}$
The Harmonic Oscillator states are derived from raising operators in HarmonicOscillator/Welcome.htm These are the same as the ones used in ../AngularMomentum.pdf The states in this potential are discussed in HarmonicOscillator .docx

Each of the four potentials is considered as a series of V_{i} values in Flats.docx

The differential equation can be solved numerically, especially when the starting point is a potential minimum.

DiffEq. .docx

