Legendre Polynomials: Rodriques' Formula and Recursion Relations

Jackson says "By manipulation of the power series solutions it is possible to obtain a compact representation of the Legendre polynomials known as Rodrigues' formula." Here is a proof that Rodrigues' formula indeed produces a solution to Legendre's differential equation. From the differential equation, assuming a series solution $P_{n}=\sum a_{j} x^{j}(\alpha=0)$ we obtained the relation

$$
a_{j+2}=\frac{j(j+1)-n(n+1)}{(j+1)(j+2)} a_{j}
$$

[JDJ (3.14), with $\alpha=0$]. With $j=n-2 k$, this is satisfied by

$$
a_{n-2 k}=(-1)^{k} \frac{(2 n-2 k)!}{2^{n} k!(n-k)!(n-2 k)!}
$$

where $1 / 2^{n}$ is conventional. So, we can write

$$
P_{n}(x)=\sum_{k=0}^{[n / 2]}(-1)^{k} \frac{(2 n-2 k)!}{2^{n} k!(n-k)!(n-2 k)!} x^{n-2 k},
$$

where $[n / 2]$ denotes the "greatest integer" or the integer part. For integer $n-2 k$, this is

$$
P_{n}(x)=\sum_{k=0}^{[n / 2]} \frac{(-1)^{k}}{2^{n} k!(n-k)!}\left(\frac{d}{d x}\right)^{n} x^{2 n-2 k}=\frac{1}{2^{n} n!}\left(\frac{d}{d x}\right)^{n} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!}(-1)^{k}\left(x^{2}\right)^{n-k}
$$

where the extra terms introduced by extending the upper limit of the sum from $[n / 2]$ to n have zero derivative. By the binomial theorem, this expression is

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n} n!}\left(\frac{d}{d x}\right)^{n}\left(x^{2}-1\right)^{n} . \tag{3.16}
\end{equation*}
$$

Jackson next says, "From Rodrigues' formula it is a straightforward matter" to obtain recursion relations for the P_{n}. To this end, first prove some relations that are useful in many applications. Let $\mathcal{D}=d / d x$. Then, for any function $f(x)$,

$$
\mathcal{D}^{l}(x f)=x\left(\mathcal{D}^{l} f\right)+l\left(\mathcal{D}^{l-1} f\right)
$$

This can be proved by induction: it clearly holds for $l=0$, for which it reads $x f=x f$, and for $l=1$ by the product rule for derivatives, $\mathcal{D}(x f)=x(\mathcal{D} f)+f(\mathcal{D} x)$. Suppose it holds for $l-1$; then

$$
\begin{aligned}
\mathcal{D}^{l}(x f) & =\mathcal{D}\left[\mathcal{D}^{l-1}(x f)\right]=\mathcal{D}\left[x\left(\mathcal{D}^{l-1} f+(l-1) \mathcal{D}^{l-2} f\right]\right. \\
& =\left[x\left(\mathcal{D}^{l} f\right)+\mathcal{D}^{l-1} f\right]+(l-1) \mathcal{D}^{l-1} f=x\left(\mathcal{D}^{l} f\right)+l\left(\mathcal{D}^{l-1} f\right)
\end{aligned}
$$

Apply for $g(x)=x f(x)$:

$$
\begin{aligned}
\mathcal{D}^{l}\left(x^{2} f\right) & =\mathcal{D}^{l}(x \cdot f x)=x \mathcal{D}^{l}(f x)+l \mathcal{D}^{l-1}(f x) \\
& =x\left[x\left(\mathcal{D}^{l} f\right)+l \mathcal{D}^{l-1} f\right]+l\left[x \mathcal{D}^{l-1} f+(l-1) \mathcal{D}^{l-2} f\right] \\
& =x^{2}\left(\mathcal{D}^{l} f\right)+2 l x\left(\mathcal{D}^{l-1} f\right)+l(l-1)\left(\mathcal{D}^{l-2} f\right)
\end{aligned}
$$

This procedure iterated leads to the general and perhaps well known result

$$
\mathcal{D}^{n}(f g)=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!}\left(\mathcal{D}^{k} f\right)\left(\mathcal{D}^{n-k} g\right)
$$

and so in particular

$$
\begin{equation*}
\mathcal{D}^{l}\left[\left(x^{2}-1\right) f\right]=\left(x^{2}-1\right)\left(\mathcal{D}^{l} f\right)+2 l x\left(\mathcal{D}^{l-1} f\right)+l(l-1)\left(\mathcal{D}^{l-2} f\right) \tag{*}
\end{equation*}
$$

Now, use $(*)$ to prove the middle of Jackson's (3.29). Apply \mathcal{D} to Rodrigues' formula for P_{l+1}, first commuting \mathcal{D}^{l} as above and then applying the product rule for derivatives a number of times:

$$
\begin{aligned}
& \mathcal{D} P_{l+1}=\mathcal{D}\left[\frac{1}{2^{l+1}(l+1)!} \mathcal{D}^{l+1}\left(x^{2}-1\right)^{l+1}\right]=\frac{1}{2(l+1)} \mathcal{D}^{2}\left[\mathcal{D}^{l} \frac{1}{2^{l} l!}\left(x^{2}-1\right)\left(x^{2}-1\right)^{l}\right] \\
& \quad=\frac{1}{2(l+1)} \frac{1}{2^{l} l!} \mathcal{D}^{2}\left[\left(x^{2}-1\right) \mathcal{D}^{l}\left(x^{2}-1\right)^{l}+2 l x \mathcal{D}^{l-1}\left(x^{2}-1\right)^{l}+l(l-1) \mathcal{D}^{l-2}\left(x^{2}-1\right)^{l}\right] \\
& \quad=\frac{1}{2(l+1)}\left[\mathcal{D}\left(\left(x^{2}-1\right) \mathcal{D} P_{l}\right)+\left(2 P_{l}+2 x \mathcal{D} P_{l}\right)+\left(2 l x \mathcal{D} P_{l}+4 l P_{l}\right)+l(l-1) P_{l}\right]
\end{aligned}
$$

From Legendre's equation, the first term is $l(l+1) P_{l}$. Gathering terms in $x \mathcal{D} P_{l}$ and P_{l},

$$
\mathcal{D} P_{l+1}=\frac{1}{2(l+1)}\left[2(l+1)^{2} P_{l}+2(l+1) x \mathcal{D} P_{l}\right]
$$

or, finally, the desired result,

$$
\begin{equation*}
\mathcal{D} P_{l+1}=(l+1) P_{l}+x \mathcal{D} P_{l} \tag{3.29b}
\end{equation*}
$$

It seems likely that there is an easier way to get here, but this works.
Here is another one:

$$
\begin{aligned}
\mathcal{D} P_{l+1} & =\mathcal{D}\left[\frac{1}{2^{l+1}(l+1)!} \mathcal{D}^{l+1}\left(x^{2}-1\right)^{l+1}\right]=\frac{1}{2(l+1)} \frac{1}{2^{l} l!} \mathcal{D}^{l}\left[\mathcal{D}^{2}\left(x^{2}-1\right)^{l+1}\right] \\
& =\frac{1}{2(l+1)} \frac{1}{2^{l} l!} \mathcal{D}^{l}\left[4 l(l+1) x^{2}\left(x^{2}-1\right)^{l-1}+2(l+1)\left(x^{2}-1\right)^{l}\right] \\
& =\frac{1}{2^{l} l!} \mathcal{D}^{l}\left[2 l\left(x^{2}-1+1\right)\left(x^{2}-1\right)^{l-1}+\left(x^{2}-1\right)^{l}\right] \\
& =\frac{1}{2^{l} l!} \mathcal{D}^{l}\left[2 l\left(x^{2}-1\right)^{l-1}+(2 l+1)\left(x^{2}-1\right)^{l}\right]=\mathcal{D} P_{l-1}+(2 l+1) P_{l}
\end{aligned}
$$

From beginning to end, this says

$$
\begin{equation*}
\mathcal{D} P_{l+1}-\mathcal{D} P_{l-1}=(2 l+1) P_{l} \tag{3.28}
\end{equation*}
$$

