Legendre Polynomials: Rodriques’ Formula and Recursion Relations

Jackson says “By manipulation of the power series solutions it is possible to obtain a compact
representation of the Legendre polynomials known as Rodrigues’ formula.” Here is a proof
that Rodrigues’ formula indeed produces a solution to Legendre’s differential equation. From
the differential equation, assuming a series solution P, = Zajxj (v = 0) we obtained the
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where [n/2] denotes the “greatest integer” or the integer part. For integer n — 2k, this is
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where the extra terms introduced by extending the upper limit of the sum from [n/2] to n

have zero derivative. By the binomial theorem, this expression is

Py(z) = 2n1n! (%)”(gﬁ 1), (3.16)

Jackson next says, “From Rodrigues’ formula it is a straightforward matter” to obtain re-
cursion relations for the P,,. To this end, first prove some relations that are useful in many

applications. Let D = d/dx. Then, for any function f(x),
D'(xf) = (D'f) +1(D'1f).

This can be proved by induction: it clearly holds for [ = 0, for which it reads zf = x f, and
for I = 1 by the product rule for derivatives, D(xf) = z(Df) 4+ f(Dx). Suppose it holds for
[ —1; then
Dl(xf) = DD Naf)) = Da(D" ' f+ (1 - 1)D'*f]
= (@' + D7+ - DD = 2(D) +UDT).



Apply for g(z) = zf(2):
D'(a?f) = D'(x - fr) = 2D'(fz) + 1D (fx)
= 2[z(D' f) + 1D + 1 [2D L + (1= 1)D2
= 22(DLf) 4 20z (DL ) + 11— 1) (D2 ).

This procedure iterated leads to the general and perhaps well known result
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and so in particular

D[(@? = 1)f] = (@® = 1) (D' f) + 2l (D'~ ) + 11 = 1) (D2 ). (%)

Now, use (*) to prove the middle of Jackson’s (3.29). Apply D to Rodrigues’ formula for
P4, first commuting D! as above and then applying the product rule for derivatives a

number of times:
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From Legendre’s equation, the first term is [(l + 1) P;. Gathering terms in 2 DP; and P,
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or, finally, the desired result,

DP 1= (l+1)P+zDPF. (3.290)

It seems likely that there is an easier way to get here, but this works.

Here is another one:
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From beginning to end, this says

DP 1 —DP_1=(2l+1)P,. (3.28)



