
Legendre Polynomials: Rodriques’ Formula and Recursion Relations

Jackson says “By manipulation of the power series solutions it is possible to obtain a compact

representation of the Legendre polynomials known as Rodrigues’ formula.” Here is a proof

that Rodrigues’ formula indeed produces a solution to Legendre’s differential equation. From

the differential equation, assuming a series solution Pn =
P

ajx
j (α = 0) we obtained the

relation

aj+2 =
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(j + 1)(j + 2)
aj

[JDJ (3.14), with α = 0]. With j = n� 2k, this is satisfied by
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(2n� 2k)!
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,

where 1/2n is conventional. So, we can write
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where [n/2] denotes the “greatest integer” or the integer part. For integer n� 2k, this is

Pn(x) =

[n/2]
X

k=0

(�1)k

2nk!(n� k)!

� d

dx

�n
x2n−2k =

1

2n n!

� d

dx

�n
n
X

k=0

n!

k! (n � k)!
(�1)k (x2)n−k,

where the extra terms introduced by extending the upper limit of the sum from [n/2] to n

have zero derivative. By the binomial theorem, this expression is

Pn(x) =
1

2n n!

� d

dx

�n
(x2 � 1)n . (3.16)

Jackson next says, “From Rodrigues’ formula it is a straightforward matter” to obtain re-

cursion relations for the Pn. To this end, first prove some relations that are useful in many

applications. Let D = d/dx. Then, for any function f(x),

D

l(xf) = x (Dlf) + l (Dl−1f).

This can be proved by induction: it clearly holds for l = 0, for which it reads xf = xf , and

for l = 1 by the product rule for derivatives, D(xf) = x(Df) + f(Dx). Suppose it holds for

l � 1; then

D

l(xf) = D[Dl−1(xf)] = D[x(Dl−1f + (l � 1)Dl−2f ]

= [x(Dlf) +D

l−1f ] + (l � 1)Dl−1f = x(Dlf) + l(Dl−1f).
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Apply for g(x) = xf(x):

D

l(x2f) = D

l(x � fx) = xDl(fx) + lDl−1(fx)

= x[x(Dlf) + lDl−1f ] + l [xDl−1f + (l � 1)Dl−2f ]

= x2(Dlf) + 2lx (Dl−1f) + l(l � 1) (Dl−2f).

This procedure iterated leads to the general and perhaps well known result

D

n(fg) =

n
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(Dkf)(Dn−kg),

and so in particular

D

l[(x2 � 1)f ] = (x2 � 1) (Dlf) + 2lx (Dl−1f) + l(l � 1) (Dl−2f). (�)

Now, use (�) to prove the middle of Jackson’s (3.29). Apply D to Rodrigues’ formula for

Pl+1, first commuting D

l as above and then applying the product rule for derivatives a

number of times:
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.

From Legendre’s equation, the first term is l(l + 1)Pl. Gathering terms in xDPl and Pl,
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.

or, finally, the desired result,

DPl+1 = (l + 1)Pl + xDPl. (3.29b)

It seems likely that there is an easier way to get here, but this works.

Here is another one:
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= DPl−1 + (2l + 1)Pl.

From beginning to end, this says

DPl+1 �DPl−1 = (2l + 1)Pl . (3.28)


