
’t Hooft-Polyakov Magnetic Monopoles

I. GENERALITIES

Magnetic monopoles arise naturally when considering non-singular, finite energy solutions
to non-Abelian gauge theories in three-dimensional space [1, 2]. Let

L = Dµ� · Dµ�− 1

4
Gµν ·Gµν − V (�), (1)

where Dµ is a combination of ∇µ and the gauge potentials Wµ; assume V (�) has minimum
value zero. It is always possible to choose a gauge in which the time components W a

0 vanish
(for any given solution, we can find a gauge transformation which takes it to a solution with

W 0
a = 0 [2]). In such a gauge, we have D0� = �̇, G0i = Ẇi, and the energy takes the form

E = T + V =
∫

d3x
[
|�̇|2 +

1

2
|Ẇi|2 + |Di�|2 +

1

4
|Gij|2 + V (�)

]
. (2)

For finite energy as r = |x| → ∞ we need

V (�) → 0, |Di�| = o(r−3/2). (3)

We would like to then conclude that � must approach a limit which is a zero of the potential,
but such a statement is not gauge invariant: given a gauge where it is true, we may always
perform a gauge transformation which is an oscillatory function of r and thus will make �
oscillate at infinity. However, at any given instant it is possible to find a gauge in which the
radial components W r

a = r̂iW a
i vanish for all r greater than some nonzero radius. In this

gauge, equation (3) implies |∂�/∂r| = o(r−3/2), and so indeed

�∞(r̂) = lim
r→∞�(r r̂) (4)

exists for each direction r̂. The map �∞(r̂) takes the “two-sphere” S2 (directions in physical
space) to the set M0 of zeroes of V (directions in the internal space of �, or the coset space
G/H). As a result of the equations of motion, we expect that �∞ varies continuously with
time, and so its topological characteristics will be preserved.

Can �∞(r̂) depend nontrivially on r̂? It would seem that if so, then as r → ∞ the
transverse components of ∇i� will behave as 1/r, a behavior which leads to a divergent
energy in equation (2). However, the quantity that appears in the energy is not the gradient
but the covariant gradient. Thus, in order to have finite energy we must have

|r̂ ∧ ∇i�| = O(r−1), |r̂ ∧Wi| = O(r−1), |r̂ ∧ Di�| = o(r−3/2); (5)

that is, a seemingly “delicate” cancellation has to occur. This, it turns out, is exactly what
happens: the variation of � in space are cancelled by a group transformation that leaves
vanishing Di�. The finiteness of the energy connects the large-r behavior of the gauge fields
with that of the scalar fields,

lim
r→∞ rW a

i Ta�∞(r̂) = − i

e
∇i�. (6)

In particular, this means that the gauge potentials must go like 1/r at large r, which we
recognize as characteristic of the fields of point charges. This means that the field strengths
go as 1/r2, their squares as 1/r4, and the energy integral is convergent at large r for up to
three space dimensions.
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II. THE ’T HOOFT-POLYAKOV MONOPOLE

Magnetic monopoles in non-Abelian gauge theories were discovered by ’t Hooft[3] and
Polyakov [4]. Consider an SU(2) model in which the scalar field � transforms according to
the adjoint representation (a vector in the internal space), with potential

V (�) =
λ

4
(|�|2 − a2)2. (7)

The adjoint fields Wµ and Gµν = ∇µWν − ∇νWµ − eWµ ∧Wν are also vectors, and the
covariant derivative is Dµ� = ∇µ�− eWµ ∧ �. The Lagrangian density is

L = Dµ� · Dµ�− 1

4
Gµν ·Gµν − λ

4
(|�|2 − a2)2, (8)

with equations of motion

DµDµ� = −λ� (|�|2 − a2), DνG
µν = e� ∧ Dµ� = −jµ. (9)

We are interested in cases where � has a nontrivial angular behavior at infinity. In this
model, the set of zeroes (minima) of the potential,

M0 = {� : |�|2 = a2}, (10)

is a two-dimensional sphere. A candidate possible nontrivial angular behavior is

�∞(r̂) = lim
r→∞�(rr̂) = ar̂. (11)

An Ansatz which has this behavior is

� = r̂
H(aer)

er
, W i

a = εaijx̂
j 1 − K(aer)

er
, W 0

a = 0. (12)

The dimensionless radius is ξ = aer. The energy in the fields is

E =
4πa

e

∫ ∞

0

dξ

ξ2

[
ξ2

(
dK

dξ

)2

+
1

2

(
ξ
dH

dξ
− H

)2

+
1

2
(K2 − 1)2 + K2H2 +

λ

4e2
(H2 − ξ2)2

]

(13)
with equations of motion

ξ2d2K

dξ2
= KH2 + K(K2 − 1), (14)

ξ2d2H

dξ2
= 2K2H +

λ

e2
H(H2 − ξ2) (15)

(these equations in fact follow from variation of the energy in [13]). The boundary conditions
are K − 1 < O(ξ) and H < O(ξ) as ξ → 0 and K → 0, H ∼ ξ sufficiently fast as ξ → ∞.
“Sufficiently fast” is not a problem; with H ∼ ξ, the first equation becomes d2K/dξ2 = K
as ξ → ∞, and the desired solution will approach zero as e−ξ.
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The full solution to these equations is difficult; for the general case there is not even a
numerical result published. For λ → 0 (retaining the condition |�|2 = a2 at infinity), Prasad
and Sommerfield [5] find an analytic solution,

K = ξ csch ξ, H = ξ coth ξ − 1, (16)

for which the integral in (13) is exactly 1. In general, the energy (or rest mass) is

M = E =
4πa

e
f(

λ

e2
), (17)

where the function f is of order 1. Some other published values are

f(0.1) = 1.1 [3], f(0.5) = 1.42 [9], f(10) = 1.44 [3], (18)

but my guess is that not all of these are accurate.
For λ/e2 � 1, we expect H → ξ, except for a small region near ξ = 0. This can be made

quantitative: if we write H = ξ(1 − h), then

d2h

dξ2
+

2

ξ

dh

dξ
=

2λ

e2
h(1 − h)(1 − 1

2
h) → 2λ

e2
h; (19)

and thus h falls exponentially h ∼ e−ξ/ε, with scale ε =
√

2λ/e2 = MH/MW [the solution for

small h is in fact a modified Bessel function, h = k0(ξ/ε)].
Using the variational principle, any pair of functions H , K we make up places an upper

bound on the energy. For large λ we expect to drive H → ξ. With H = ξ, the PS function
K = ξ csch ξ gives f = 1

2
+ ζ(2) = (3 + π2)/6 = 2.14493. The function K = sech ξ, another

pure guess with the right boundary behaviors, gives f = 1.81008, a quite reasonable upper
bound, since fixing H = ξ and solving for the best K gives f = 1.786609 [6–8]. The values
1 and 1.786609 bracket the possible values, since the function f(λ) is monotonic,

df

dλ
=

∂f

∂λ
=

∫
dξ

ξ2

1

4e2

(
H2 − ξ2

)2 ≥ 0, (20)

(the first equality since the functions H and K are solutions to δf/δH = δf/δK = 0). For
small and large values of ε, Kirkman and Zachos [8] find

f →
{

1 + ε/2 + · · · (ε → 0)

1.787 − 2.228/ε + · · · (ε → ∞)
(21)

where again ε =
√

2λ/e2.

The plot (next page) shows the dimensionless integral f as a function of λ/e2. Horizontal
long-dash lines the values f = 1 (λ → 0) and f = 1.786609 (λ → ∞); short dash lines show
the Kirkman and Zachos first corrections for small and large ε. Open symbols connected by
dotted lines show variational upper limits found from K = ξ csch ξ (circles) and K = sech ξ
(squares). Filled symbols show the values in (18). A combination of the dashed lines and the
lower envelope of the open points represents an approximation to f(λ). If anyone obtains a
better numerical result, please let me know.
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III. ELECTROMAGNETISM AND MAGNETIC CHARGE

If the scalar field tends to |�| = a at infinity, the Wµ∧� terms in the Lagrangian become

L = · · ·+ e2a2
[
Wµ ·Wµ − 1

a2
(Wµ · �)(Wµ · �)

]
.

This gives the gauge bosons transverse to � masses M2
t = M2

W = e2a2, but leaves massless
the mode along the direction of � (the vector fields associated with elements of the Lie alge-
bra which generate transformations that do not preserve �0 acquire a mass, while the vector
fields associated with the generators which leave �0 fixed [the “little group” of �0] remain
massless). It is tempting to interpret this massless mode as electromagnetism. Consider the
“electromagnetic” field tensor,

F µν =
�

a
·Gµν . (22)

Using the symmetry of the triple scalar product, (Wλ ∧ �) · Gµν = −� · (Wλ ∧ Gµν),
derivatives of this tensor are gauge invariant,

∇λF
µν = (

1

a
∇λ�) ·Gµν +

�

a
· (∇λG

µν) = (
1

a
Dλ�) ·Gµν +

�

a
· (DλG

µν). (23)

We can write
∇νF

µν = −jµ, ∇νF
∗µν = −kµ, (24)

where, using the equations of motion and the Bianchi identities,

jµ = −(
1

a
Dν�) ·Gµν +

�

a
· jµ, kµ =

1

2
εµνρσ (

1

a
Dν�) ·Gρσ =

1

2
εµνρσ ∇νFρσ. (25)
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At infinity, where Dλ�→ 0 exponentially fast, Maxwell’s equations are satisfied with kµ = 0
and jµ the appropriate component of the SU(2) current jµ. However, flux integrals at infinity
show a nonzero magnetic charge inside.

Having identified the magnetic field, we can calculate the magnetic flux and thus the
magnetic charge of the ’t Hooft-Polyakov solution. In general, in a region where |�| = a,
the condition

Dµ� = ∇µ�− eWµ ∧ � (26)

is satisfied by

Wµ =
1

a2e
� ∧∇µ� + Λµ�, (27)

where Λµ is an arbitrary function. This gives

Gµν =
1

a2e
∇µ� ∧ ∇ν�+ (∇µΛν −∇νΛµ)�, (28)

or

Fµν =
1

a
� ·Gµν =

1

a2e
� · (∇µ� ∧ ∇ν�) + a(∇µΛν −∇νΛµ). (29)

For the ’t Hooft-Polyakov solution, Λµ = 0, G0i = 0, and

(Ga)ij =
εijkx̂

kx̂a

er2
, Fij =

εijkx̂
k

er2
(30)

(this also follows from eq. [12] with K → 0). This is a radial magnetic field,

Bi = −1

2
εijkF

jk =
1

er2
r̂i (31)

with total magnetic charge

g = lim
r→∞

∮
B · dS = −4π

e
. (32)

In general, if n(r̂) is a nonsingular unit vector function of θ, φ, the asymptotic forms

� = an, Wµ =
1

e
n ∧ ∇µn, Gµν =

1

e
∇µn ∧ ∇νn (33)

are exact solutions to the equations of motion. The magnetic charge for such a configuration
is

g = lim
r→∞

∮
B · dS = −1

2

∮
dSiεijkF

jk = −4π

e
N, (34)

where

N =
1

4π

∮
dSi 1

2
εijk n · (∇jn ∧∇kn). (35)

This N is an integer, the number of times the unit sphere in real space is mapped onto the
sphere |�| = a by �∞(r̂) = na. The unit of electric charge is q = 1

2
e, thus satisfying the

Dirac condition
qg

4π
=

1

2
N (36)
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IV. TOPOLOGICAL CURRENTS AND THE BOGOMOLNY BOUND

The ’t Hooft-Polyakov solutions possess a quantized magnetic charge, related to a topo-
logical property (winding number) of �∞(r̂). Since �∞(r̂) evolves continuously with time,
this charge is conserved. Much as soliton number in the sine-Gordon model, this quantity,
conserved for topological reasons, can be obtained as a charge from a current whose diver-
gence vanishes independently of the dynamics; the current kµ in (25) obeys ∇µkµ = 0 from
the antisymmetry of εµνρσ.

This provides an alternative way to determine the minimum mass of a monopole: Start
with the inequality ∣∣∣∣Di�± 1

2
εijkG

jk
∣∣∣∣
2

≥ 0, (37)

so
1

2
|Di�|2 +

1

4
|Gjk|2 ≥ ±1

2
εijkDi� ·Gjk. (38)

Thus, for a time-independent configuration,

E =
∫

d3x
[
|Di�|2 +

1

4
|Gij|2 + V (�)

]

≥
∫

d3x
[
1

2
|Di�|2 +

1

4
|Gij |2

]
≥ ±

∫
d3x

1

2
εijkDi� ·Gjk = ±ga, (39)

so E ≥ |g|a. For a solution with magnetic charge g = 4πN/e, this says

MN ≥ 4π|N |
e

= |N |MW

4α
.

The Prasad-Sommerfield solution saturates this bound for N = 1. The fact that the Bogo-
molny bound is satisfied for the Prasad-Sommerfield solution means that it must satisfy the
equation

Di� =
1

2
εijkG

jk. (40)

This relation plus the Bianchi identities imply the equations of motion for a static solution,
thus reducing the equations of motion to first order equations. This provides a systematic
way of arriving at the Prasad-Sommerfield solution.

[1] P. Goddard and D. I. Olive, Reports on Progress in Physics, 41, 1357 (1978).
[2] S. Coleman, Aspects of Symmetry (Cambridge University Press, 1985).
[3] G. ’t Hooft, Nucl. Phys. B79, 276 (1974).
[4] A. M. Polyakov, JETP Lett. 20, 194 (1974).
[5] M. K. Prasad and C. M. Sommerfield, Phys. Rev. Lett. 35, 760 (1975).
[6] E. B. Bogomol’nyi, Yad. Fiz. 24, 861 (1976) [Sov. J. Nucl. Phys. 24, 449 (1976)].
[7] A. N. Schellekens and C. K. Zachos, Phys. Rev. Lett. 50, 1242 (1983).
[8] T. W. Kirkman and C. K. Zachos, Phys. Rev. D24, 999 (1981).
[9] B. Julia and A. Zee, Phys. Rev. D11, 2227 (1975).

[10] S. Coleman, S. Parke, A. Neveu, and C. M. Sommerfield, Phys. Rev. D15, 544 (1977).


