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Abstract. We find the invariant measure for two new types ofS matrices relevant for chaotic
scattering from a cavity in a waveguide. TheS matrices considered can be written as a 2× 2
matrix of blocks, each of rankN , in which the two diagonal blocks are identical and the two
off-diagonal blocks are identical. TheS matrices are unitary; in addition, they may be symmetric
because of time-reversal symmetry. The invariant measure, with and without the condition of
symmetry, is given explicitly in terms of the invariant measures for the well known circular
unitary and orthogonal ensembles. Some implications are drawn for the resulting statistical
distribution of the transmission coefficient through a chaotic cavity.

1. Introduction

A wave-scattering problem can, very generally, be described by its scattering matrixS

(Newton 1966). In a stationary problem,S relates the outgoing-wave to the ingoing-wave
amplitudes. The condition of flux conservation implies unitarity ofS,

SS† = I. (1)

If, in addition, the problem is invariant under the operation of time reversal,S is symmetric,

S = ST . (2)

If one desires a statistical description of the scattering, the problem of assigning ‘equal
a priori probabilities’ in the space of scattering matricesS (Hua 1963, Dyson 1962) may be
relevant, and, in fact, has been shown to be important for the description of chaotic scattering
(Mello et al 1985, Bl̈umel and Smilansky 1988, 1989, 1990, Lewenkopf and Weidenmüller
1991, Jalabertet al 1994, Baranger and Mello 1994, 1995). The assignment is done
through the notion of theinvariant measure: the measure dµ(β)(S) which is invariant under
the symmetry operations for the universality class, labelled byβ, in question. Explicitly,
dµ(β)(S) = dµ(β)(U0SV0) whereU0, V0 are arbitrary fixed unitary matrices in the case of
unitary S matrices (the circular unitary ensemble (β = 2)), with the restrictionV0 = UT

0 in
the case of unitary symmetricS matrices (the circular orthogonal ensemble (β = 1)) (Hua
1963, Dyson 1962, for a review see Mehta 1991).

As an example, consider single-electron scattering by a ballistic quantum dot connected
to the outside by two leads, which play the role of waveguides, each withN transverse
modes or channels (for a review see Beenakker and van Houten 1991). TheS matrix is
then 2N -dimensional and has the structure

S =
[
r t ′

t r ′

]
(3)
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wherer, r ′ are theN ×N reflection matrices (for incidence from either lead) andt , t ′ the
corresponding transmission matrices. Of great physical relevance is the total transmission
coefficient,

T = tr(tt†) (4)

which is proportional to the conductanceG of the cavity,G = (2e2/h)T . The invariant
measure for theS matrix implies a probability distributionw(T ) for T which has been
calculated in a number of cases by Jalabertet al (1994) and Baranger and Mello (1994).

In the present article we studyS matrices of the form (3), with the restrictionr = r ′,
t = t ′; i.e.

S =
[
r t

t r

]
. (5)

S matrices with this structure are physically relevant because it is possible, in principle, to
study electron transport through chaotic cavities with point spatial symmetries. Consider
a two-dimensional cavity connected to two parallel waveguides. With the condition of
unitarity alone, theS matrices (5) are appropriate for a system with inversion symmetry
with respect to a point but no time-reversal symmetry (Baranger and Mello 1996). With the
additional condition (2), equation (5) describes a system which is time-reversal invariant
and has either inversion symmetry or symmetry with respect to a line perpendicular to the
waveguides (Baranger and Mello 1996).

The invariant measure for matrices of the form (5), with and without the condition
of symmetry (2), is obtained in section 2. A number of important expectation values are
obtained, for an arbitrary number of channelsN , in section 3. The probability densityw(T )
arising from the invariant measure is obtained in section 4.1 forN = 1; w(T ) for N = 2
is found in section 4.2 for theS matrices (5) with the condition of symmetry (2) and in
section 4.3 without the symmetry condition.

2. The invariant measure for S matrices with r = r′, t = t′

All of the 2N -dimensionalS matrices with the structure (5) can be simultaneously brought
to block-diagonal form by using the rotation matrix

R0 = 1√
2

[
1N 1N

−1N 1N

]
(6)

where 1N is theN -dimensional unit matrix:

S ′ = R0SR
T
0 =

[
s(+) 0

0 s(−)

]
. (7)

SinceS is unitary, so areS ′ and the twoN×N matricess(±) = r± t . Clearly, twoarbitrary
unitary matricess(±) can generate the most general unitaryS matrix with the structure (5)
by taking

r = 1
2[s(+) + s(−)] t = 1

2[s(+) − s(−)]. (8)

If, in addition, S is symmetric, so arer, t and s(±). The total number of independent
parameters of unitary matrices with the structure (5) is thus 2N2 without andN(N + 1)
with the symmetry requirement.

The most general automorphism of unitary matrices with the structure (5) is generated
by the transformation

s̃(±) = u
(±)
0 s(±)v(±)0 (9)
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where u(±)0 , v(±)0 are arbitrary but fixedN × N unitary matrices. Correspondingly, the
original S is transformed into

S̃ = U0SV0 (10)

with the 2N × 2N unitary matrixU0 given by

U0 =
[
α β

β α

]
α = 1

2[u(+)0 + u
(−)
0 ] β = 1

2[u(+)0 − u
(−)
0 ] (11)

and a similar expression holds forV0 with v(±)0 replacingu(±)0 . In this automorphism, there
is the restrictionv(±)0 = [u(±)0 ]T if the S matrices are also symmetric.

Denoting by d̂µ(β)(S) the invariant measure forS matrices of the form (5), with (without)
the condition of symmetry forβ = 1 (2), we thus have

dµ̂(β)(S) = dµ(β)(s(+)) dµ(β)(s(−)). (12)

3. Expectation values

A number of expectation values have been calculated for the circular orthogonal ensemble
by Mello and Seligman (1980) and for the circular unitary ensemble by Mello (1990). These
results will be employed here to evaluate various expectation values of physical interest for
the invariant measure (12).

We use the notation

Qa1α1,...,alαl
c1γ1,...,cmγm

(β) ≡ 〈[sc1γ1 . . . scmγm ][sa1α1 . . . salαl ]
∗〉(β) (13)

to indicate an expectation value for the circular ensembleβ for N -dimensional unitarys
matrices. One can show thatQ = 0 unlessm = l . A simple application of this result is
the expectation value

〈rab〉(β)
〈tab〉(β)

}
= 1

2[〈s(+)ab 〉(β) ± 〈s(−)ab 〉(β)] = 0 (14)

for a, b = 1, . . . , N .
Using the statistical independence ofs(+) and s(−), equation (12), one concludes

immediately that

〈rabr∗
cd〉(β) = 〈tabt∗cd〉(β) = 1

2Q
cd
ab(β) 〈rabt∗cd〉(β) = 0. (15)

In particular, the average of individual reflection and transmission coefficients is given by

〈|rab|2〉(β) = 〈|tab|2〉(β) = 1
2Q

ab
ab(β) (16)

and the average of the total transmission coefficient of equation (4) is

〈T 〉(β) = 1
2

∑
ab

Qab
ab(β). (17)

The cross second moment of individual transmission coefficients is

〈|tab|2|tcd |2〉(β) = 1
8{Qab,cd

ab,cd(β)+Qab
ab(β)Q

cd
cd(β)+ [Qcd

ab(β)]
2}. (18)

Summing over indices, we find〈T 2〉 and obtain the variance ofT :

varT (β) ≡ 〈(T − 〈T 〉)2〉(β) = 1
8

∑
abcd

[Qcd
ab(β)]

2. (19)
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In order to calculate definite values for〈T 〉 and varT , recall that forβ = 1, Mello and
Seligman (1980) find

Qaα
cγ (β = 1) = δac δ

α
γ + δαc δ

a
γ

N + 1
(20)

while for β = 2, Mello (1990) shows

Qaα
cγ (β = 2) = δac δ

α
γ

N
. (21)

Using these expressions in (17) and (19), we obtain

〈T 〉(β) = N

2
(22a)

varT (β=1) = N

4(N + 1)
(22b)

varT (β=2) = 1
8. (22c)

The result for〈T 〉 is expected since reflection and transmission are statistically equivalent,
equations (8) and (12). AsN → ∞, varT tends to the universal result1

4 for β = 1, while
for β = 2, varT is completely independent ofN .

4. The probability distribution of T

4.1. The caseN = 1

Writing

s(±) = exp[iθ(±)] (23)

we have from (8)

T = 1
2[1 − cos(θ (+) − θ(−))] (24)

for both β = 1 andβ = 2. The probability distributionw(T ) of T is an average over the
angles and can be written as

w(T ) =
〈
δ

[
T − 1 − cos(θ (+) − θ(−))

2

]〉
θ(+),θ (−)

. (25)

Equation (12) implies thatθ(+) and θ(−) are statistically independent and uniformly
distributed in(0, 2π), yielding

w(T ) = 1

π
√
T (1 − T )

. (26)

4.2. The caseN = 2, β = 1

The most general 2× 2 unitary symmetric matricess(±) can be written as

s(±) =
[ −√

ρ±e2iα± √
τ±ei(α±+γ±)√

τ±ei(α±+γ±) √
ρ±e2iγ±

]
(27)

whereα± andγ± are defined in(0, 2π), 0 6 ρ± 6 1, 0 6 τ± 6 1, andρ± + τ± = 1. The
invariant measure fors(±) is (Jalabertet al 1994, Baranger and Mello 1994)

dµ(1)(s(±)) ∝ dτ±
√
τ± dα± dγ±. (28)
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In terms of these variables, the probability densityw(T ′) for T ′ = 1 − T ∈ (−1, 1) is

w(T ′) ∝
∫

dτ+ dτ−
√
τ+τ− dα+ dγ+ dα− dγ−δ

{
T ′ − 1

2

√
ρ+ρ−[cos 2(α+ − α−)

+ cos 2(γ+ − γ−)] −
√
τ+τ− cos(α+ − α− + γ+ − γ−)

}
. (29)

The integrals overα− andγ− are trivial. Defining 2α+ = φ + ψ and 2γ+ = φ − ψ , we
have

w(T ′) ∝
∫
δ
[
T ′ −

(√
τ+τ− +

√
ρ+ρ− cosψ

)
cosφ

]
d
√
τ+ d

√
τ− dφ dψ. (30)

The integral overφ gives

w(T ′) ∝
∫ 1

0
dz

∫ 1

0
dz′

∫ 2π

0
dψ

u(X2 − T ′2)√
X2 − T ′2 (31)

whereu(X2 − T ′2) is a step function,z = √
τ+, z′ = √

τ−, and

X = zz′ +
√
(1 − z2)(1 − z′2)cosψ. (32)

Notice that changingψ to ψ + π , which does not alter the integral in (30), is equivalent
to changingzz′ to −zz′ in X2. In (31) we can thus extend the range of integration of the
variablesz andz′ to the interval(−1, 1). Furthermore, we can write, in (31),ψ = ϕ − ϕ′

and integrateϕ andϕ′ separately from 0 to 2π without altering the answer (up to a constant),
yielding

w(T ′) ∝
∫ 1

−1
dz

∫ 1

−1
dz′

∫ ∫ 2π

0
dϕ dϕ′ u(X

2 − T ′2)√
X2 − T ′2 . (33)

We now introduce the three-dimensional unit vectorû with componentsx = sinϑ cosϕ,
y = sinϑ sinϕ andz = cosϑ , and similarly the unit vector̂u′ defined with primed variables.
The quantityX is the cosine of the the angleξ betweenû and û′, X = cosξ(û, û′). Thus
(33) can be written as an integral over two solid angles,

w(T ′) ∝
∫ ∫

u(cos2 ξ(û, û′)− T ′2)√
cos2 ξ(û, û′)− T ′2 d� d�′. (34)

Since the integrand depends only upon the relative angle between the two unit vectorsû

and û′, we can fixû′ along thez-axis and integrate over�. In this caseξ = ϑ and

w(T ′) ∝
∫ 1

T ′

dz√
z2 − T ′2 . (35)

The final result forw(T ), properly normalized, is

w(T ) = 1

π
ln

1 + √
T (2 − T )

|1 − T | . (36)

From this distribution one finds explicitly〈T 〉 = 1 and varT = 1
6, consistent with the results

of section 3 forN = 2.
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4.3. The caseN = 2, β = 2

The most general 2× 2 unitary matricess(±) can be written as

s(±) =
[ −√

ρ±ei(α±+α̇±)
√
τ±ei(α±+γ̇±)√

τ±ei(γ±+α̇±) √
ρ±ei(γ±+γ̇±)

]
(37)

whereα±, α̇±, γ±, γ̇± are defined in(0, 2π), 0 6 ρ± 6 1, 0 6 τ± 6 1, andρ± + τ± = 1.
Note that if one takeṡα = α and γ̇ = γ then equation (37) reduces to theβ = 1 case (27).
The invariant measure fors(±) is (Jalabertet al 1994, Baranger and Mello 1994)

dµ(2)(s(±)) ∝ dτ± dα± dα̇± dγ± dγ̇±. (38)

In terms of these variables, the probability densityw(T ′) for T ′ = 1 − T ∈ (−1, 1) is

w(T ′) ∝
∫

dτ+ dτ− dα+ dα̇+ dγ+ dγ̇+ dα− dα̇− dγ− dγ̇−

×δ
{
T ′ − 1

2

√
ρ+ρ−[cos(α+ − α− + α̇+ − α̇−)+ cos(γ+ − γ− + γ̇+ − γ̇−)]

− 1
2

√
τ+τ−[cos(α+ − α− + γ̇+ − γ̇−)+ cos(γ+ − γ− + α̇+ − α̇−)]

}
. (39)

The integrals overα−, α̇−, γ−, γ̇− are trivial. Defining

ω = 1
2(α

+ + γ̇+ − γ+ − α̇+)

ψ = 1
2(α

+ + α̇+ − γ+ − γ̇+)

φ = 1
2(α

+ + α̇+ + γ+ + γ̇+) (40)

we can write

w(T ′) ∝
∫
δ
[
T ′ −

(√
τ+τ− cosω +

√
ρ+ρ− cosψ

)
cosφ

]
dτ+ dτ− dω dψ dφ. (41)

The integral overφ gives

w(T ′) ∝
∫

dτ+ dτ− dψ dω
u(Y 2 − T ′2)√
Y 2 − T ′2 (42)

whereu(Y 2 − T ′2) is a step function, and

Y =
√
τ+τ− cosω +

√
ρ+ρ− cosψ. (43)

We can write, in (42),ω = ϕ1 − ϕ′
1, ψ = ϕ2 − ϕ′

2 and integrate overϕ1, ϕ
′
1, ϕ2, ϕ

′
2 from 0

to 2π without altering the answer. We also writeτ+ = cos2 θ, τ− = cos2 θ ′ and get

w(T ′) ∝
∫ π/2

0
dθ sinθ cosθ

∫ π/2

0
dθ ′ sinθ ′ cosθ ′

∫ ∫ ∫ ∫ 2π

0
dϕ1 dϕ′

1 dϕ2 dϕ′
2
u(Y 2 − T ′2)√
Y 2 − T ′2 .

(44)

Y can now be written as

Y = cosθ cosθ ′ cos(ϕ1 − ϕ′
1)+ sinθ sinθ ′ cos(ϕ2 − ϕ′

2). (45)

If we introduce the complex unit vectorv

v =
[

cosθeiϕ1

sinθeiϕ2

]
(46)

with 0 6 θ 6 π/2, 0 6 ϕ1,2 6 2π , and, similarly, the complex unit vectorv′, defined with
primed variables, we can expressY in terms of scalar products as

Y = 1
2(v

†v′ + v′†v). (47)
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These scalar products are invariant with respect to unitary transformations. We also need
to define a ‘solid angle’, invariant under the same operation. We first introduce the ‘arc
element’

(ds)2 = dv† dv = (dθ)2 + cos2 θ(dϕ1)
2 + sin2 θ(dϕ2)

2 (48)

from which we extract a metric tensorg and construct the solid angle d� as

d� = | detg|1/2 dθ dϕ1 dϕ2 = sinθ cosθ dθ dϕ1 dϕ2. (49)

Equation (44) forw(T ′) now becomes

w(T ′) ∝
∫

u[ 1
4(v

†v′ + v′†v)2 − T ′2]

[ 1
4(v

†v′ + v′†v)2 − T ′2]1/2
d� d�′. (50)

Just as in the case of the previous subsection we now notice that, if we fixv′ in the
integrand of equation (50) and integrate over�, we get a result independent ofv′. The
reason is that the scalar products in equation (50) are invariant under unitary transformations
and we can always transform any givenv′ into a fixed vector: we choose this fixed vector
as

v′ =
[

1
0

]
(51)

which impliesθ ′ = ϕ′
1 = 0. We thus have

w(T ′) ∝
∫

u(cos2 θ cos2 ϕ − T ′2)
(cos2 θ cos2 ϕ − T ′2)1/2

sinθ cosθ dθ dϕ (52)

where we have denotedϕ1 by ϕ. Doing the integral overθ we find

w(T ′) = 1

π2

∫ 2π

0

√
cos2 ϕ − T ′2

cos2 ϕ
u(cos2 ϕ − T ′2) dϕ. (53)

The normalization constant in (53) was calculated by integrating overT ′ first and then over
ϕ, since in both steps one finds elementary integrals. Performing the integrations in this
order one can also verify that〈T 〉 = 1 and varT = 1

8, in agreement with the results of
section 3 forN = 2.

The integral overϕ in (53) leads to a hypergeometric function. First, doing the change
of variables sinϕ = √

1 − T ′2 sinθ , we can write

w(T ′) = 4

π2
(1 − T ′2)

∫ π/2

0

cos2 θ dθ

[1 − (1 − T ′2) sin2 θ ]3/2
. (54)

Finally, we find (Gradshteyn and Ryzhik 1965, equation (3.681.1))

w(T ) = 1

π
T (2 − T )F ( 1

2,
3
2; 2; T (2 − T )). (55)

As an algebraic check, one can verify that
∫
w(T ) dT = 1 (Gradsteyn and Ryzhik 1965,

equation (7.512.4)).
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