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Abstract. We find the invariant measure for two new typesSofnatrices relevant for chaotic
scattering from a cavity in a waveguide. TKematrices considered can be written as a 2

matrix of blocks, each of rankv, in which the two diagonal blocks are identical and the two
off-diagonal blocks are identical. Thematrices are unitary; in addition, they may be symmetric
because of time-reversal symmetry. The invariant measure, with and without the condition of
symmetry, is given explicitly in terms of the invariant measures for the well known circular
unitary and orthogonal ensembles. Some implications are drawn for the resulting statistical
distribution of the transmission coefficient through a chaotic cavity.

1. Introduction

A wave-scattering problem can, very generally, be described by its scattering rSatrix
(Newton 1966). In a stationary problerfi,relates the outgoing-wave to the ingoing-wave
amplitudes. The condition of flux conservation implies unitaritySof

Sst=1. (1)
If, in addition, the problem is invariant under the operation of time revesfsis symmetric,
s=sT. )

If one desires a statistical description of the scattering, the problem of assigning ‘equal
a priori probabilities’ in the space of scattering matricegHua 1963, Dyson 1962) may be
relevant, and, in fact, has been shown to be important for the description of chaotic scattering
(Mello et al 1985, Blimel and Smilansky 1988, 1989, 1990, Lewenkopf and Weid#iem
1991, Jalaberet al 1994, Baranger and Mello 1994, 1995). The assignment is done
through the notion of thevariant measurethe measure @® (S) which is invariant under

the symmetry operations for the universality class, labelleg@8bin question. Explicitly,
du®(8) = du'® (UgSVy) where Uy, Vy are arbitrary fixed unitary matrices in the case of
unitary S matrices (the circular unitary ensembjg £ 2)), with the restrictionVy = UJ in

the case of unitary symmetri€ matrices (the circular orthogonal ensemhe=£ 1)) (Hua

1963, Dyson 1962, for a review see Mehta 1991).

As an example, consider single-electron scattering by a ballistic quantum dot connected
to the outside by two leads, which play the role of waveguides, each Mitransverse
modes or channels (for a review see Beenakker and van Houten 1991)S iiagrix is
then 2v-dimensional and has the structure

rot
s=|7 1] ©)
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wherer, r’ are theN x N reflection matrices (for incidence from either lead) and the
corresponding transmission matrices. Of great physical relevance is the total transmission
coefficient,

T =tr(sth (4)

which is proportional to the conductancg of the cavity, G = (2¢?/h)T. The invariant

measure for theS matrix implies a probability distributionv(7") for T which has been

calculated in a number of cases by Jalale¢rl (1994) and Baranger and Mello (1994).
In the present article we study matrices of the form (3), with the restriction= r’,

t=1tie.
5= [; ;]. ®)

S matrices with this structure are physically relevant because it is possible, in principle, to
study electron transport through chaotic cavities with point spatial symmetries. Consider
a two-dimensional cavity connected to two parallel waveguides. With the condition of
unitarity alone, theS matrices (5) are appropriate for a system with inversion symmetry
with respect to a point but no time-reversal symmetry (Baranger and Mello 1996). With the
additional condition (2), equation (5) describes a system which is time-reversal invariant
and has either inversion symmetry or symmetry with respect to a line perpendicular to the
waveguides (Baranger and Mello 1996).

The invariant measure for matrices of the form (5), with and without the condition
of symmetry (2), is obtained in section 2. A number of important expectation values are
obtained, for an arbitrary number of channalsin section 3. The probability density(T')
arising from the invariant measure is obtained in section 4. 1Mot 1; w(T) for N = 2
is found in section 4.2 for th& matrices (5) with the condition of symmetry (2) and in
section 4.3 without the symmetry condition.

2. The invariant measure for S matrices with r =7, t = ¢/

All of the 2N-dimensionalS matrices with the structure (5) can be simultaneously brought
to block-diagonal form by using the rotation matrix

1 1y 1N]
Ro= — 6
where 1y is the N-dimensional unit matrix:
, s 0
S' = RoSR} = [ 0 S()] Q)

Sinces is unitary, so ares” and the twoN x N matricess® = r+¢. Clearly, twoarbitrary
unitary matrices™® can generate the most general unitarynatrix with the structure (5)
by taking

r = %[S(+) + 5] = %[s(” —s]. (8)

If, in addition, S is symmetric, so are, t+ and s®. The total number of independent
parameters of unitary matrices with the structure (5) is thig @ithout and N (N + 1)
with the symmetry requirement.

The most general automorphism of unitary matrices with the structure (5) is generated
by the transformation

FE) = sy )
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where uS”, vi" are arbitrary but fixedv x N unitary matrices. Correspondingly, the

original S is transformed into

S = UoSVo (10)
with the 2V x 2N unitary matrixUp given by
Uo = [Z 5} a=3[u” +ui’l p=3eY —ug’l (1)

and a similar expression holds fo with v replacinguS”. In this automorphism, there
is the restrictionvS” = [u§”]" if the S matrices are also symmetric.

Denoting by q&(ﬂ)(S) the invariant measure fd matrices of the form (5), with (without)
the condition of symmetry fop = 1 (2), we thus have

di® () = du® sy du® (sO). (12)

3. Expectation values

A number of expectation values have been calculated for the circular orthogonal ensemble
by Mello and Seligman (1980) and for the circular unitary ensemble by Mello (1990). These
results will be employed here to evaluate various expectation values of physical interest for
the invariant measure (12).
We use the notation
in;? Zi.oll/lm ('B) = <[S£‘171 et SCm}’m][Slllvtl . 'Sa/m]*>(ﬂ) (13)

.....

to indicate an expectation value for the circular ensengber N-dimensional unitary
matrices. One can show th& = 0 unlessm =1 . A simple application of this result is
the expectation value

(rap)® 1p/ (P )
oy ® [ = 2ltsa )P £ (5,,)P1 =0 (14)
fora,b=1,...,N.

Using the statistical independence ¢f” and s, equation (12), one concludes
immediately that

(ravrig)? = (tapti)? = 3068)  (raptiy)? = 0. (15)
In particular, the average of individual reflection and transmission coefficients is given by
(Irao)? = (Itap|H)? = 506 (B) (16)
and the average of the total transmission coefficient of equation (4) is
T =3 Z Qi (B). (17)

The cross second moment of individual transmission coefficients is
(s ?11al®) P = O (B) + Q% (B) Q4(B) + [ Q4 (B)I?). (18)

Summing over indices, we find'?) and obtain the variance df:

varT® = (T — ()3 = 1 Y [0 BT (19)

abed
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In order to calculate definite values f¢F) and varT, recall that forg = 1, Mello and
Seligman (1980) find

825% + 8258

wp=1= 20
0, B=1 N+l (20)
while for 8 = 2, Mello (1990) shows
ao _ _ 7y
0, (B=2) = N (21)
Using these expressions in (17) and (19), we obtain
m® =" (222)
N
TB=D) _ 22b
var 4N + 1) (220)
varr#=? =1, (22c)

The result for(T) is expected since reflection and transmission are statistically equivalent,
equations (8) and (12). AN — oo, varT tends to the universal resuﬁtfor B =1, while
for 8 = 2, varT is completely independent a¥.

4. The probability distribution of T

4.1. The cas&V =1
Writing

s = exp[io™®] (23)
we have from (8)

T = 3[1—cog6™ — 0] (24)
for both 8 = 1 andg = 2. The probability distributionv(7T) of T is an average over the
angles and can be written as

(25)

— + _g=)
w(T) = <8 |:T — 1—cos® o )]> .
) o=

2

Equation (12) implies thab™ and 67 are statistically independent and uniformly
distributed in(0, 27), yielding

1
w(T) = ﬁ (26)

42. Thecas&v =2,6=1

The most general 2 2 unitary symmetric matrices™ can be written as

@ [ o JeEdatrh .
ST VoEdetrh JpEetirt (27)

wherea® andy* are defined in0, 2r), 0 < p* < 1,0< t* < 1, andpT +t* = 1. The
invariant measure for™® is (Jalaberiet al 1994, Baranger and Mello 1994)

D) /() dr* + 4+
du'V (s )O(?doc dy=. (28)
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In terms of these variables, the probability densit¢7’) for 7' =1—-T € (-1,1) is

w(T') d\;; dot dy* do~ dy 6 {T’ — %\/,O‘Fp—[cos Aat —a)
+cosdqyt —y )] —vrrr-cogat —a” +pt — 7/7)} i (29)

The integrals overr™ andy ~ are trivial. Defining 2" = ¢ + ¢ and 2/t = ¢ — ¢, we
have

w(T') o / 5 [T’ - (W +V oo cosw> cos¢] dv/z+ dv/z— d dy. (30)
The integral over gives
w(T) o f dz/ dz’ f dy ”(X2 TZ) (31)
whereu (X2 — T'?) is a step function; = /7 +, z/ = v/7—, and
X =27 +v (1 —z3)(1 - z?)cosy. (32)

Notice that changings to ¢ + 7, which does not alter the integral in (30), is equivalent

to changingzz’ to —zz’ in X2. In (31) we can thus extend the range of integration of the
variablesz andz’ to the interval(—1, 1). Furthermore, we can write, in (3L, = ¢ — ¢’

and integrate andy’ separately from 0 tos2 without altering the answer (up to a constant),

yielding

2 2 12
w(T)o</ dz/ dz/ dwd’”(x T). (33)

We now introduce the three-dimensional unit veatowith componentst = sin® cosy,

y = sin® sing andz = cos®, and similarly the unit vectai’ defined with primed variables.
The quantityX is the cosine of the the angkebetweeni andi’, X = cosé(u, u’). Thus
(383) can be written as an integral over two solid angles,

, u(Co&E(m, ') — T2 ,
T dQ de’. 34
i« // VCoSE®M, i) — T2 (39

Since the integrand depends only upon the relative angle between the two unit vectors
andu’, we can fixi’ along thez-axis and integrate ove®. In this case = ¢ and

Loz
w(T') ——— 35
e[ E (35)
The final result forw(T), properly normalized, is

w(T) G LEVT@-T) (36)
- -7

From this distribution one finds explicith7") = 1 and varr = %, consistent with the results
of section 3 forN = 2.
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4.3. Thecas&v =2,8=2

The most general 2 unitary matrices® can be written as
_ JoEd@t+d®)  [oEd@F+yE)
S(i)Z p-eli-i refiy_i
[rEe (™ +a) ﬁé‘y +75)
wherea®, a*, y*, y* are defined in0, 2r), 0 < p* < 1,0< t* < 1, andp® + v+ = 1.
Note that if one takeg = @ andy = y then equation (37) reduces to the= 1 case (27).
The invariant measure for® is (Jalaberet al 1994, Baranger and Mello 1994)

du®(s®)) oc de* da® da* dy* dy®. (38)
In terms of these variables, the probability density7’) for 7' =1—-T € (—1,1) is

(37)

w(T") oc/ drtdr de™datdyTdyTda da” dy T dy

xa{T’ — 3 /pplcostat —a” + &t — ) +cosyt —y T+t — )]

IVt [cosat —a 4yt — ) ooyt —y T 46t — a—)]} . (39)
The integrals ovex—,a~, y—, y~ are trivial. Defining

o=@ +yF -yt —ah)

V=3t +at -yt —yh

=36 +a"+yt+yh (40)
we can write

w(T') / ) [T’ - (v ttT=Ccosw + /ptp~ cosw> cos¢] drt dr™ dw dy dop. (41)

The integral ovew gives

Y2 _ T/Z
w(T') f dr* dr~ dy do % (42)
whereu(Y? — T'?) is a step function, and
=Vttt cosw ++/ptp~ COSY. (43)

We can write, in (42)w = ¢1 — ¢1, ¥ = @2 — ¢, and integrate oveps, @7, @2, ¢, from 0
to 27 without altering the answer. We also writé = co$ 6, t~ = cog 6’ and get

w/ Y2 T/2
w(T") o</ do sing cos@/ d9’ sind’ cosy’ //// dg1 dg] dgpdy, —————= u( )
0

T/2
(44)
Y can now be written as
Y = cost cosh’ o1 — ¢}) + Sind sind’ cog, — ¢5). (45)
If we introduce the complex unit vectar
= | S ey

with 0 < 6 < /2,0 < 912 < 2, and, similarly, the complex unit vecter, defined with
primed variables, we can expregsin terms of scalar products as

Y = %(UTU/ +v'Tv). 47)
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These scalar products are invariant with respect to unitary transformations. We also need
to define a ‘solid angle’, invariant under the same operation. We first introduce the ‘arc
element’

(ds)? = dv dv = (dF)? + coF 6 (dp1)? + sir? 6 (dg,)? (48)
from which we extract a metric tensgrand construct the solid angl€das

d2 = | detg|*2 dd dy; dp, = sind cost do de dy,. (49)
Equation (44) forw(T’) now becomes
u[%(v*v/ + )% -T2

w(T") :
( ) [%(UTU/ + v/Tv)Z _ T/2]1/2

dode’. (50)

Just as in the case of the previous subsection we now notice that, if we ifixthe
integrand of equation (50) and integrate o¥erwe get a result independent of. The
reason is that the scalar products in equation (50) are invariant under unitary transformations
and we can always transform any givehinto a fixed vector: we choose this fixed vector

as
o = [ (ﬂ (51)

which implies¢’ = ¢; = 0. We thus have

u(cosgcogp —T'?)
(cog 6 co g — T2)1/2
where we have denoteg, by ¢. Doing the integral oveé we find

1 [* JcoRg —T"
w(T)=?/O —_—

co g

w(T') sind cosH do dy (52)

u(cog ¢ — T'%) dg. (53)

The normalization constant in (53) was calculated by integrating 6Vvérst and then over
@, since in both steps one finds elementary integrals. Performing the integrations in this
order one can also verify thdf’) = 1 and varl = %, in agreement with the results of
section 3 forN = 2.

The integral over in (53) leads to a hypergeometric function. First, doing the change
of variables sip = +/1 — T'2sing, we can write

4 /2 cog 0 do
)= —1-T" / : 54
W)= 15l ) o [1-@-T7?sirte]32 (4)
Finally, we find (Gradshteyn and Ryzhik 1965, equation (3.681.1))
1
wl)=-TQR-T)F3,3:2T2-1T)). (55)
T

As an algebraic check, one can verify that(7)dT = 1 (Gradsteyn and Ryzhik 1965,
equation (7.512.4)).
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