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Gene network shaping of inherent noise spectra
D. W. Austin1,3, M. S. Allen1,3, J. M. McCollum3, R. D. Dar1, J. R. Wilgus3, G. S. Sayler3, N. F. Samatova2,
C. D. Cox3 & M. L. Simpson1,3

Recent work demonstrates that stochastic fluctuations in molecu-
lar populations have consequences for gene regulation1–10. Pre-
vious experiments focused on noise sources or noise propagation
through gene networks by measuring noise magnitudes. However,
in theoretical analysis, we showed that noise frequency content is
determined by the underlying gene circuits, leading to a mapping
between gene circuit structure and the noise frequency range11,12.
An intriguing prediction from our previous studies was that
negative autoregulation shifts noise to higher frequencies where
it is more easily filtered out by gene networks11—a property that
may contribute to the prevalence of autoregulation motifs (for
example, found in the regulation of ,40% of Escherichia coli
genes). Here we measure noise frequency content in growing
cultures of E. coli, and verify the link between gene circuit
structure and noise spectra by demonstrating the negative auto-
regulation-mediated spectral shift. We further demonstrate that
noise spectral measurements provide mechanistic insights into
gene regulation, as perturbations of gene circuit parameters are
discernible in the measured noise frequency ranges. These results
suggest that noise spectral measurements could facilitate the
discovery of novel regulatory relationships.
We investigated single gene circuits on high copy number plasmids

(pGFPasv) in E. coli TOP10 cells where destabilized (half-life
,110min) green fluorescent protein (GFP) was constitutively
expressed (Fig. 1a). The average GFP fluorescence, which corre-
sponded to the concentration of mature GFP protein, was measured
in individual cells in growing cultures for 4–8 h periods using time-
lapse microscopy1,2 (see the Supplementary Movie). Cells remained
in the exponential growth phase throughout the experiment.
Fluorescence was recorded every 5min through multiple generations
of cell division (Fig. 1b), and noise was found as the difference
between the fluorescence of individual cells and the populationmean
determined at each measurement time (Fig. 1c). Individual noise
traces (trajectories) that spanned the entire growth time were con-
structed by combining sequential noise traces of cells through lines of
descent (Fig. 1b and Supplementary Information). Normalized
autocorrelation functions of noise in fluorescence were estimated
for individual trajectories (Fm(t)) and composites (F c(t)) of all
tracked trajectories in each cell culture for the duration of the
experiment (Fig. 1d). The composite autocorrelation functions
provided the better estimate of the underlying random process,
while individual trajectory autocorrelation functions may provide
insights into gene circuit structure or function as described below.
Histograms of noise frequency ranges (see Box 1) extracted from

the individual trajectory autocorrelation functions (Fig. 2a, b) were
compiled and compared with noise frequency range distributions
found from exact stochastic simulation13,14 using a model that
included intrinsic and extrinsic noise, protein dilution and protein
decay (see the Supplementary Information). The simulations pro-
duced as much data as 500 separate experiments, and the resulting

distributions estimated the probability of finding a given noise
frequency range from a randomly selected trajectory. Experimental
distributions were drawn from this random process and were subject
to variation, particularly the relatively rare events in the high-
frequency tails. Although some measured distributions suggested
a bimodal distribution (Fig. 2), this was probably due to non-
representative sampling of the rare high-frequency events (see the
Supplementary Information).
Analytical models predict that protein dilution and decay rates are

dominant factors defining the noise frequency range in constitutively
expressed gene circuits11 (Box 1). To determine noise frequency range
sensitivity to protein dilution, we varied cell growth rate for the
pGFPasv circuits by controlling temperature, and in a separate
experiment we changed the protein decay rate using a plasmid
(pGFPaav) containing a reduced half-life (,60min) GFP variant15.
These perturbations to gene circuit parameters were clearly visible in
the noise spectral measurements, as noise frequency ranges extended
to higher frequencies as a result of faster growth (Fig. 2a) or higher
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Figure 1 | Measurement of noise frequency ranges using fluorescence
time-lapse microscopy. a, Plasmid pGFPasv containing the constitutively
expressed GFP (110-min half-life) gene circuit. b, Bihourly (time in hours
shown at the bottom right of images) snapshots of fluorescence in pGFPasv
cell cultures (doubling time ¼ 59min; scale bar ¼ 2 mm). The arrows follow
one trajectory through six cell divisions. c, d, Noise in GFP concentration (c)
and normalized autocorrelation functions (d) for all trajectories tracked
from the experiment shown in b. The composite autocorrelation is shown as
a bold black curve. Fluorescence in c is given in arbitrary units (a.u.).
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protein decay rate (Fig. 2b). Varying temperature changes the rates of
all reactions, and while noise magnitude is sensitive to all of these
changes, the noise frequency range of constitutively expressed
circuits is mainly sensitive to protein dilution and decay rates only
(see the Supplementary Information).
Significant variation from the noise frequency range predicted

from decay and dilution rates indicates additional structure beyond
the simple components of the constitutively expressed gene circuit.
Most of the effects that have been considered (for example, extrinsic
noise1,2, protein–DNA binding in transcriptional control12,16, protein
dimerization17, GFP maturation (see the Supplementary Infor-
mation)) lower the noise frequency range. To test the predicted
increased noise frequency range with negative autoregulation11, we
constructed circuits with the gene for the protein TetR inserted
upstream of gfp, creating a transcriptional fusion (pTetR–GFPasv;
Fig. 3a). This circuit was negatively autoregulated, as its expression
was repressed by TetR binding to operator sites in the promoter18. A
control circuit without autoregulation was also tested, in which a
chromosomal copy of tetRwas constitutively expressed from the PN25
promoter. In both cases, repression was relieved by addition of
anhydrotetracycline (ATc) to the growth medium, and thus allowed
the modulation of GFP expression (Fig. 3b).
To determine if ATc had an effect on noise spectra independent of

the autoregulation of the TetR circuit, we measured the noise
frequency range of the pGFPasv circuits in media supplemented
with 100 ngml21 of ATc. There was a marked modification in the
noise frequency range distribution (Fig. 3c), indicating a change in
either the processing of the noise or the nature of the noise sources.

Our modelling points to the latter, with ATc inhibition of translation
leading to a whitening of extrinsic noise, which we then explored
using a stochastic simulation model that included ribosome–ATc
heterodimer formation (see the Supplementary Information). The
frequency range distribution extracted from these simulations
was compared to the measured distribution (Fig. 3c), with both
showing a characteristic peak shift and peak broadening. Although
not conclusive, this gross agreement between measured and
simulated distributions supports the hypothesis that the mechan-
ism of ATc-mediated noise frequency range modulation is an
increase in high-frequency content of the global extrinsic noise
associated with translation, and a reduction of the weighting of
extrinsic noise.
We measured noise frequency range distributions of pTetR–

GFPasv and the control cells grown in media with 100 ngml21 of
ATc. Composite noise frequency ranges of the negatively autoregu-
lated pTetR–GFPasv exceeded those of the constitutively expressed
pGFPasv in 100 ngml21 of ATc by asmuch as,2–3-fold (Figs 3d and
4a), whereas the control circuits showed no noise frequency range
increase (Fig. 4a). The negative autoregulation-mediated noise
remodelling was seen as an increase of the noise frequency range
(Fig. 4a) and as a modification of the shape of the distribution
(Fig. 3d and Supplementary Information). Autoregulation frequency
response is limited by protein decay and dilution, and therefore has a
larger effect on slower fluctuations than on faster fluctuations. Noise
trajectories that would have clustered at the lower end of the
frequency range distribution in unregulated cells are pushed to
higher values by negative autoregulation, while those in the higher-
frequency tail of the distribution are only weakly affected (Fig. 3e).
This results in frequency range distributions closer to normal
distributions (Fig. 3d). The frequency shift and the change in
distribution shape are indicative of the presence of negative
autoregulation.
The magnitude of the autoregulation-mediated frequency shift

was indicative of the strength of regulation (Box 1), which varied
significantly as a function of cell doubling time (Fig. 4a). The
measurements indicate that regulation strength is small at both fast
and slow rates of cell growth, with a peak at intermediate levels of cell
growth. In our gene circuit model (Fig. 4b), regulation strength is the
product of terms that describe (1) the change in free (not bound
to ATc and capable of repression) TetR dimer concentration in
response to changes in transcription rate, and (2) the change of
transcription rate in response to changes in free TetR dimer binding
to the operator (see the Supplementary Information). Our measure-
ments consistently showed lower average fluorescence at high cell
growth rates (data not shown), indicating that GFP (and probably
TetR) concentration was reduced by rapid dilution. At high growth

Box 1 |Noise frequency range

The noise frequency range is determined by the nature of the noise
sources and gene circuit filtering. Fluctuations generated within the
gene circuit (intrinsic noise) arise from the random timing and
discrete nature of molecular transitions (for example, transcription,
translation, decay or dilution through growth, and
multimerization9,10). Extrinsic noise arises from the intrinsic noise of
global sources (for example, fluctuations in ribosome or RNA
polymerase populations) or of upstream genes in a regulatory
cascade7. Intrinsic noise sources have wide frequency ranges, while
extrinsic sources are confined to a lower-frequency range by their
own gene circuit filtering2.
The frequency range is found from the normalized autocorrelation

function (F(t)) of noise in a reporter protein concentration. Total
noise in the protein concentration is produced by the sum of
intrinsic and extrinsic noise source components filtered primarily by
protein dilution through cell growth (rate ¼ d) and protein decay
(rate ¼ g) such that

FðtÞ ¼WE
dþ g

g
e2dt 2

d

g
e2ðdþgÞt

� �
þWIe

2ðdþgÞt

where WE and W I account for the relative contributions of extrinsic
and intrinsic noise sources, and we have assumed that the
frequency range of the extrinsic noise source is set by the cell
growth rate2.
We define the noise frequency range (FN) as

FN ¼
1

t1=2

where t 1
2
is the value of t where F(t) drops to 1

2. Slower fluctuations
remain correlated over longer periods and therefore have lower
values of FN.
Theoretical analysis predicts that negative autoregulation

increases the noise frequency range such that11:

FN_autoreg ¼ ð1þ jTjÞFN_unreg
T is a unitless parameter proportional to the degree to which the
autoregulated gene circuit resists changes in the equilibrium protein
concentration (strength of regulation)11. The measured noise
frequency range can be used to determine the strength of regulation
using the equation above.

Figure 2 | Effects of cell doubling time and protein half-life on noise
frequency range. Measured distributions are shown as vertical bars and
simulated distributions as solid lines. a, Shift in noise frequency range for
the pGFPasv circuit as doubling time increases from ,30min (100
trajectories; T ¼ 32 8C) to,90min (120 trajectories; T ¼ 22 8C). b, Shift in
noise frequency range as protein decay time decreases from 110min
(pGFPasv; 59-min doubling time; 154 trajectories; T ¼ 26 8C) to 60min
(pGFPaav; 56-min doubling time; 33 trajectories; T ¼ 26 8C).
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rates, repression strength was low as most TetR was bound with ATc.
Conversely, at low cell growth rates, abundant free TetR dimer was
formed, but regulation strength was low as the repression curve
saturated12,16. The result was a regulation curve that peaked at
intermediate cell growth rates where there was an adequate abun-
dance of free TetR dimer, but not so much that the repression curve
had saturated (Fig. 4c).
Previous work demonstrated the noise magnitude damping effect

of negative autoregulation19. We have demonstrated that gene cir-
cuits also manipulate noise spectra, impacting the regulatory effect of
the noise as it propagates through the gene network. We verified the
link between gene circuit structure and the noise frequency range,
and showed that changes in gene circuit parameters (for example, cell
growth and protein decay rates) modulate the noise frequency range.
Our results show a shift of noise spectra to higher frequencies and a
remodelling of the noise frequency range distribution that is charac-
teristic of negative autoregulation. This frequency shift may have
biological relevance, as higher-frequency noise is more easily filtered
out by downstream gene circuits in a regulatory cascade, and there-
fore has little regulatory impact11. Noise may play a beneficial role in
some gene circuit functions17,20,21, and circuit structure may have
evolved to optimize rather than minimize noise. The theory
described here predicts that positive regulation, which plays an
important role in many gene circuit functions17,22,23, increases noise
magnitude while shifting noise frequency range downward into a
more regulatory-relevant regime where it may play a role in the
function of some genetic switching elements17. Intriguingly, the noise
frequency range distributions provided a means for evaluating a
hypothesis of the mechanism of ATc-mediated remodelling of noise
spectra in unregulated gene circuits (see the Supplementary Infor-
mation), suggesting that the coupling of spectral measurements and
simulation provides a new tool for probing mechanistic details of
gene circuit regulation.

METHODS
Synthetic gene circuits. The high-copy plasmid pGFPasv (pZE21-GFPasv;
ref. 24) was used both directly and as the platform for further genetic
manipulation. This plasmid contains the gfpmut3* reporter gene, modified to
include a carboxy-terminal amino-acid tag previously shown to facilitate
accelerated degradation of GFP protein within the cell15, and is expressed
from the strong promoter PLtet0-1 (ref. 18). GFP variants with alternative
half-lives were created by replacement of the 3 0 tag of the gfp gene with synthetic
oligonucleotides using standard methods15. The tetR gene was amplified
by polymerase chain reaction (PCR), cloned, sequenced and then subsequently
digested and inserted upstream of gfp-asv to form the ATc-inducible, nega-
tively autoregulated transcriptional fusion in plasmid pTetR–GFPasv. The

Figure 3 | Effect of negative autoregulation on
noise frequency range. a, pTetR–GFPasv
negatively autoregulated gene circuit with b,
repression strength modulated by ATc. c, Effect
of ATc on the noise frequency range of the
unregulated pGFPasv circuit (doubling time
,60min; 154 trajectories without ATc; 114
trajectories with ATc). sim., simulated.
d, Negative autoregulation-mediated shift of
noise frequency range (doubling time,60min;
pGFPasv: 154 trajectories without ATc, 114
trajectories with ATc; pTetR–GFPasv: 114
trajectories). e, Model of the shift of frequency
range distribution shape due to negative
feedback. The red bars represent an unregulated
circuit distribution; blue bars represent
distribution for the circuit with negative
autoregulation. The dashed box and arrow show
the shift of the low-frequency trajectories to the
centre of the distribution while the higher-
frequency trajectories are unaffected.
Fluorescence inb is given in arbitrary units (a.u.).

Figure 4 | Regulation strength modulation of noise frequency range.
a, Noise frequency range versus doubling time. Measured points are shown
with ^1j error bars estimated from simulation (see the Supplementary
Information). The red line is the analytical curve (see Box 1 and the
Supplementary Information) for the pGFPasv circuit, and was found from
the analytical expression for the autocorrelation function (see Box 1). The
green line is the simulated curve (see the Supplementary Information) for
pGFPasv þ 100 ngml21 ATc and was found from the simulation of the
pGFPasv circuit with ATc–ribosome binding (see the Supplementary
Information). Vertical black arrows represent regulation strength
determined by the shift of the noise frequency range. The temperature (in
8C) of each experiment is indicated by each data point. The TetR data points
are for the circuit with autoregulated tetR expression, while the TetR ctrl
data points are for the circuit with constitutive tetR expression.
b, c, Regulation of the pTetR–GFPasv circuit. The red curve shows the
concentration of free TetR dimer ([TetR2]) variation with transcription rate
(a); the blue curve shows transcription rate variation with [TetR2]; and the
black curve shows net regulation strength. The stars illustrate points on the
regulation curve similar to the TetR data in a.
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non-autoregulated control system was created by transforming the pGFPasv
plasmid into E. coli DH5aPRO (BD Biosciences), which contains a chromo-
somal insertion of the tetR gene behind the PN25 promoter.
Cultures, growth conditions and imaging. E. coliTOP10 (Invitrogen) cells were
used for all experiments unless otherwise noted. For slide experiments, overnight
cultures were grown at 28 8C inM9medium supplemented with 100mM leucine
and 10% (v/v) Luria–Bertani broth, plus kanamycin (50mgml21) and ATc
(anhydrotetracycline; Acros) when appropriate. Cultures were transferred 1:3
into fresh media and allowed to recover for ,1 h before spreading 10 ml onto
freshly prepared glass microscope slides coated with the same media containing
1% (w/v) Sea Plaque low-melt agarose (FMC). Coverslips were applied and the
slides were allowed to incubate 1 h at 28 8C before imaging. Slides were imaged
every 5min using the Leica SP2 confocal systemwith an excitationwavelength of
488 nm and emission wavelength at 500–564 nm. Temperature was maintained
using a heating lamp and monitored with a Hanna KJF thermocouple.
Data processing. Noise traces were extracted from the images for nearly all
possible trajectories in each experiment. CustomMatlab (Mathworks) programs
were used to find mean fluorescence of an entire cell population and to estimate
population doubling time from an exponential growth curve. Normalized
autocorrelations functions (ACFs) for individual trajectories (Fm) were found
from the noise time series (Xm(nTs)) using a biased algorithm25

Fmð jTsÞ ¼

PN2j
n¼1 XmðnTsÞXmððnþ jÞTsÞPN

n¼1X
2
mðnTsÞ

where Ts was the five-minute sampling interval, n was the sample number (1,
2,…, n), and j had integer values from 0 to n 2 1. The composite autocorrelation
function (F c) for M cell trajectories was found using:

Fcð jTsÞ ¼

PM
m¼1

PN2j
n¼1 XmðnTsÞXmððnþ jÞTsÞPM
m¼1

PN
n¼1 X

2
mðnTsÞ

Simulations. Gillespie’s stochastic simulation algorithm13 was used to generate
simulated estimates of ACFs, error bars, FN histograms, and FN behaviour as a
function of doubling time. The models accounted for extrinsic and intrinsic
noise sources, binding of 30S ribosomal subunits by ATc, appropriate tempera-
ture corrections, and protein sinks consisting of decay and dilution via
stochastically timed cell division processes (see the Supplementary Infor-
mation). Individual simulations were designed to closely match experimental
conditions in terms of numbers of cells tracked, distribution of cell division
frequencies, and experimental duration. Sets of many individual simulations
were used to define mean system behaviour, its variability, and experimental
uncertainty.
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