Instructor: J. Ipser

PHYSICS DEPARTMENT

77777

PHY 2004		1st Exam		February 9, 2004
Name (print, last first):			Signature:	
	On my honor, I have neit	her given nor received ur	nauthorized aid on this e	xamination.
 Code you answer she Print your Do all scra No credit Blacken to any stray: The answer 	eet. DARKEN CIRCLES Of name on this sheet and sign is atch work anywhere on this exwill be given without both ans	counted as incorrect. e closest to exact. There	o for the 5-digit number on your UFID number on your upon the end of the test, this exwith scratch work most osing a #2 pencil or bl	ber). Code your name on your your answer sheet. am printout is to be turned in. questions demand. ue or black ink. Do not make
		$g = 9.80 \text{ m/s}^2$		
	alks toward the east for 20 s at .25 m/s. What is the magnitude			the north for 30 s at a constant $1/s$?
(1) 0.8	(2) 0.6	(3) 0.4	(4) 1.3	(5) 2.9
at $\theta = 30^{\circ}$				the x axis. A hiker walks 60 m then walk in order to return to
$(1)\ 258^\circ$	(2) 221°	(3) 180°	(4) 166°	(5) 93°
	ccelerates from rest for 5 s at ne total distance traveled is 12			maintains constant velocity v_F n/s ² ?
$(1) \ 3.3$	(2) 4.2	(3) 4.9	(4) 5.5	(5) 6.1
4. At $t = 0$, at $t = 0$, and $t = 0$, and $t = 0$.	an auto accelerates from rest a ow far does the auto travel?	t 2 m/s^2 for 15 s and the	en decelerates (slows dow	vn) to rest at a constant rate of
(1) 338 m	$(2)~462~\mathrm{m}$	$(3)~529~\mathrm{m}$	(4) 106 m	(5) 632 m
traveling a		this time, auto A decel	erates (slows down) at a	tween them is 200 m, auto A is a constant rate of 3 m/s 2 and B
(1) 3.3 s	(2) 2.5 s	(3) 4.3 s	$(4) \ 4.9 \ s$	(5) 5.6 s
	= 0, rock A is thrown straigh 30 m at 20 m/s. At what time			s thrown straight down from a
(1) 0.6 s	$(2) \ 0.4 \ s$	(3) 0.8 s	(4) 1.0 s	(5) 1.2 s

- 7. An auto traveling at initial velocity 20 m/s passes a parked police cruiser. As it passes the cruiser, the auto begins to accelerate at a constant rate of 2 m/s², and the cruiser takes off after the auto, accelerating at a constant rate of 5 m/s². How far does the cruiser travel before it catches up with the auto?
 - (1) 444 m
- (2) 392 m
- (3) 346 m
- (4) 298 m
- (5) 256 m

8. A projectile is shot from ground level at an angle of 45° and strikes the top of a wall that is 25 m high. The projectile is in the air for 7 s. How far does the projectile travel horizontally?

- (1) 265 m
- (2) 302 m
- (3) 26 m
- (4) 102 m
- (5) 189 m
- 9. A rock is thrown straight up with initial velocity 20 m/s from the top of a tower of height h. The rock is in the air for 6 s before it hits the ground. What is the height h of the tower?
 - (1) 56 m
- (2) 21 m
- (3) 38 m
- (4) 44 m
- (5) 83 m

10. A rock is thrown out horizontally from a tower of height 25 m. When the rock reaches ground level, its velocity vector makes an angle of 45° with respect to the horizontal. What is the initial speed of the rock?

- (1) 22 m/s
- (2) 10 m/s
- (3) 16 m/s
- (4) 32 m/s
- (5) 8 m/s
- 11. On Earth, a cannon has a maximum range of 3×10^3 m. If the cannon is fired at an angle of 60° above the horizontal on the Moon, how far will the cannonball travel before hitting the Moon's surface? The acceleration of gravity on the Moon is 1/6 that on Earth.
 - (1) 1.6×10^4 m
- (2) $2.1 \times 10^3 \text{ m}$
- (3) $4.3 \times 10^4 \text{ m}$
- (4) 8.2×10^4 m
- $(5) 2.9 \times 10^5 \text{ m}$

12. A 0.5 kg ball is suspended in equilibrium from two wires. Wire B is horizontal and the tension in it is 4 N. What is the angle α that wire A makes with the vertical direction?

- $(1) 39^{\circ}$
- $(2) 23^{\circ}$
- $(3) 12^{\circ}$
- $(4) 30^{\circ}$
- $(5) 53^{\circ}$

13. Three masses, $M_1 = 2\text{kg}$, $M_2 = 2M_1$, $M_3 = 3M_1$, are glued together and move above the Earth. A force F = 50N is applied in the downward direction on the top of M_1 as shown. What is the magnitude of the force that M_1 exerts on M_2 ?

- (1) 22 N
- (2) 33 N
- (3) 46 N
- (4) 53 N
- (5) 66 N

14.	A 40 kg mass is placed on a scale in an elevator.	The elevator accelerates in the downward direction at 4 m/s ² .	What
	is the reading on the scale in N?		

(1) 232

(2)624

(3) 738

(4) 139

(5) 463

15. A 50 kg trunk is pushed across a horizontal floor by application of a force F at an angle of 45° with respect to the horizontal as shown. When the force $F=500\mathrm{N}$, the trunk starts from rest and is pushed through a distance of 5 m in 5 s (constant acceleration). What is the value of the coefficient of kinetic friction?

(1) 0.4

(2) 0.3

(3) 0.5

(4) 0.6

(5) 0.7

16. An auto is approaching a stopped tractor-trailer at 30 m/s. In order to avoid a collision, how far from the tractor-trailer must the auto's wheels be locked up if the kinetic coefficient of friction is 0.7?

(1) 66 m

(2) 72 m

(3) 86 m

(4) 94 m

(5) 107 m