\qquad
On my honor, I have neither given nor received unauthorized aid on this examination.

YOUR TEST NUMBER IS THE 5-DIGIT NUMBER AT THE TOP OF EACH PAGE.

(1) Code your test number on your answer sheet (use lines 76-80 on the answer sheet for the 5-digit number). Code your name on your answer sheet. DARKEN CIRCLES COMPLETELY. Code your UFID number on your answer sheet.
(2) Print your name on this sheet and sign it also.
(3) Do all scratch work anywhere on this exam that you like. Circle your answers on the test form. At the end of the test, this exam printout is to be turned in. No credit will be given without both answer sheet and printout with scratch work most questions demand.
(4) Blacken the circle of your intended answer completely, using a \#2 pencil or blue or black ink. Do not make any stray marks or some answers may be counted as incorrect.
(5) The answers are rounded off. Choose the closest to exact. There is no penalty for guessing.
(6) Hand in the answer sheet separately.

$$
g=9.80 \mathrm{~m} / \mathrm{s}^{2}
$$

1. A rifle of mass 5 kg shoots a 0.05 kg bullet. The riffe's recoil is stopped by the rifleman's shoulder. His shoulder exerts a force of 200 N for 0.1 s on the rifle. What is the bullet's initial speed in m / s ?
(1) 400
(2) 600
(3) 800
(4) 1200
(5) 1600
2. Autos A and B undergo a 1-dimensional elastic collision. The mass of A is twice that of B. Before the collision, A is moving in the positive x direction at $30 \mathrm{~m} / \mathrm{s}$, and B is moving in the positive direction at $10 \mathrm{~m} / \mathrm{s}$. After the collision, A is moving in the negative x direction at $10 \mathrm{~m} / \mathrm{s}$. What is the speed of B after the collision, in m / s ?
(1) 10
(2) 5
(3) 15
(4) 20
(5) not enough info
3. Autos 1 and 2 undergo a collision in 2 dimensions. Before the collision, Auto 2 is at rest, and auto 1 is moving along the x axis with speed $40 \mathrm{~m} / \mathrm{s}$. The mass of 1 is that twice that of 2 . After the collision, the velocities of 1 and 2 make angles $\theta_{1}=30^{\circ}$ and $\theta_{2}=60^{\circ}$, respectively, with respect to the x axis. What is the final speed of 2 , in m / s ?
(1) 40
(2) 30
(3) 20
4. A uniform seesaw is supported by a fulcrum that is located at a point $\frac{1}{3}$ of the length from one end. A child of mass 25 kg is sitting on one end. A second child of larger weight is sitting on the other end. What is the second child's mass, in kg?
(1) 50
(2) 10
(3) 25
(4) 35
(5) 90
5. A diver of mass 100 kg stands at the end of a 100 kg uniform horizontal diving board of length L. The board has 3 vertical supports as shown. Support A exerts a force of magnitude 980 N in the downward direction on the board. What is the magnitude of the force exerted by support B on the board? Neglect the widths of the supports.
(1) 0
(2) 50 N
(3) 100 N

(4) 50
(5) 60

(4) 200 N
(5) 400 N
6. A uniform ladder leans against a wall in equilibrium. The wall's force F_{W} on the ladder is horizontal as shown. The value of the coefficient of static friction between the floor and the ladder is 0.75 . The horizontal component of the force $F_{F L}$ the floor on the ladder has a magnitude of 750 N . What is the magnitude of the wall's force on the ladder in N ?

(1) 750
(2) not enough info
(3) 250
(4) 1000
(5) 1250
7. An auto decelerates uniformly to rest in 10 s while traveling a distance of 100 m . The radius of the auto's wheels is 0.333 m . What is the initial angular velocity of the auto's wheels, in rad/s? Assume that the auto's wheels do not slip.
(1) 60
(2) 80
(3) 100
(4) 120
(5) 140
8. A satellite is in a circular orbit around the Earth. Initially, the satellite is in an orbit of radius R_{I}, and its period is 2 hours. The satellite is then moved into another circular orbit so that its period is 1 day (24 hours). What is the radius R_{F} of the final orbit?
(1) $5.2 R_{I}$
(2) $1.3 R_{I}$
(3) $2.6 R_{I}$
(4) $3.4 R_{I}$
(5) $4.6 R_{I}$
