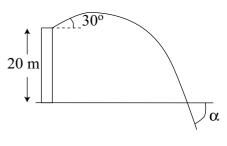
(1) 46 m

(2) 15 m


Instructor(s): J. Ipser	•	DHVSICS DEDARTM	FNT	
PHY 2004		$\begin{array}{c} \text{PHYSICS DEPARTMENT} \\ \text{1st Exam} \end{array}$		February 6, 2006
Name (print, last first):	Signature:		
On	my honor, I have neithe	r given nor received una	uthorized aid on this ex	amination.
 Code your test number). Code number on your a Print your name Do all scratch wo the test, this exa scratch work mos Blacken the cir make any stray n The answers are: 	e your name on your an answer sheet. on this sheet and sign it ork anywhere on this exa m printout is to be turn t questions demand.	also. In that you like. Circle ed in. No credit will be answer completely, use be counted as incorrectorest to exact. There	e your answers on the given without both ansusing a #2 pencil or ect.	ver sheet for the 5-digit LETELY. Code your UFID e test form. At the end of ever sheet and printout with blue or black ink. Do not
		$g=9.80~\mathrm{m/s^2}$		
axis, then for 10 then for 15 s at 1	s at 2.5 m/s at an angle	of 270° measured coun measured counterclock	terclockwise with respec	rith respect to the positive x axis, and positive x axis. What is the
(1) 0.48 m/s	$(2)~0.23~\mathrm{m/s}$	$(3)~0.11~\mathrm{m/s}$	(4) 0.34 m/s	(5) 0.59 m/s
	roblem, after the hiker fi			clockwise with respect to the
$(1) \ 330^{\circ}$	(2) 140°	(3) 40°	(4) 214°	(5) 8°
	n 1 dimension at constar 50 m/s. What is its init		o travels a net displacen	nent of 200 m in 10 s and its
(1) -10	(2) -20	(3) -30	(4) 0	(5) +10
4. An auto starts fr comes to rest at a with this trip?	om rest, accelerates at a distance of 400 m from	a constant rate of 5 m/s its standing point (1-din	s ² for 10 s and then at nensional motion). Wha	a constant rate such that it t is the total time associated
(1) 16 s	(2) 12 s	(3) 20 s	(4) 24 s	(5) 28 s
	elerates at 4 m/s^2 . The			immediately begins to chase s the cruiser travel before it
(1) 1200 m	$(2)\ 1030\ \mathrm{m}$	$(3)~920~\mathrm{m}$	(4) 815 m	(5) 745 m
	straight up from the grought h . The ball and the			ent, a rock is dropped (initial the value of h ?

(3) 24 m

(4) 35 m

(5) 96 m

7. A rock is thrown out from a tower of height 20 m at an angle of 30° above the horizontal. The initial speed of the rock is 20 m/s. What is the angle that the rock's velocity makes with respect to the ground just before it hits the ground?

 $(1) 52^{\circ}$

 $(2) 89^{\circ}$

 $(3) 64^{\circ}$

 $(4) 32^{\circ}$

 $(5) 43^{\circ}$

8. Golfer A hits golf ball A at an angle of 60° above the horizontal on the Moon, and the golf ball travels 500 m before it hits the Moon's surface. Just before hitting the surface, its speed is v_A . Golfer B hits golf ball B at an angle of 15° above the horizontal on Earth, and the gold ball travels 100 m before it hits the Earth's surface. Just before hitting the surface, its speed is v_B . What is the value of $\frac{v_B}{v_A}$. The acceleration of gravity on the Moon is 1/6 that on Earth.

(1) 1.44

 $(2)\ 1.65$

(3) 0.96

(4) 0.73

(5) 0.21

THE FOLLOWING QUESTIONS, NUMBERED IN THE ORDER OF THEIR APPEARANCE ON THE ABOVE LIST, HAVE BEEN FLAGGED AS CONTINUATION QUESTIONS: 2