
Dynamical Planckian scaling of charge response at a particle-hole-asymmetric
quantum critical point with Kondo destruction

Ananth Kandala,1, ∗ Haoyu Hu,2, ∗ Qimiao Si,2, † and Kevin Ingersent1, ‡

1Department of Physics, University of Florida, Gainesville, Florida, 32611-8440, USA
2Department of Physics & Astronomy, Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA

Metallic quantum criticality is a central theme in a variety of strongly correlated systems. Recent
experiments have raised the fundamental question of how the charge response can be singular in
cases where the Landau framework of quantum criticality allows singularity only in the spin channel.
Motivated by this emerging issue, we study the particle-hole-asymmetric regime of a Bose-Fermi
Anderson model with power-law forms for both the bosonic bath spectrum and the fermionic band
density of states. We realize a particle-hole-asymmetric quantum-critical state where quasiparticles
are lost due to a critical destruction of Kondo screening, and demonstrate a dynamical Planckian
scaling of the charge response. Implications for a new regime of heavy-fermion quantum criticality
and for Mott-Hubbard systems are discussed.

Introduction. Strange metals with a complete absence
of quasiparticles are of extensive current interest in a va-
riety of strongly correlated systems [1–3]. Such states
often arise near a quantum critical point (QCP) where
one phase continuously transforms into another at ab-
solute zero. The canonical case of antiferromagnetic
(AF) metallic QCPs is traditionally formulated within
the Landau framework of order-parameter fluctuations
[4, 5]. The majority of the Fermi surface does not expe-
rience the quantum-critical fluctuations at the ordering
wave vector, so the associated quasiparticles retain their
integrity. It is thus necessary to look beyond the Landau
framework to understand strange metals. An alterna-
tive paradigm incorporates additional quantum-critical
degrees of freedom that destroy quasiparticles over the
entire Fermi surface [6–8]. This happens when the so-
called “large” Fermi surface loses its quasiparticle weight
and jumps to a “small” Fermi surface as the system
crosses the QCP; since the quantum phase transition is
continuous, the quasiparticle weight vanishes everywhere
on the Fermi surface. A variety of experiments, in a grow-
ing number of AF heavy-fermion metals [9–18], provide
evidence for this class of Kondo-destruction QCP [6–8].

A particularly intriguing recent development is the dis-
covery of a singular critical charge response in YbRh2Si2
with dynamical Planckian (~ω/kBT ) scaling [19]. This
behavior occurs near a QCP between AF and paramag-
netic metallic phases, so it is incompatible with the Lan-
dau framework [4, 5], in which only the fluctuations of the
order-parameter (here, the spin channel) should be singu-
lar. Since YbRh2Si2 was one of the first heavy fermions
to provide experimental evidence for a sudden jump of
the Fermi surface across the QCP [9–11], it is natu-
ral to associate the charge-channel singularity with the
beyond-Landau nature of the quantum criticality. Such
a charge-channel singularity is indeed found theoretically
near Kondo-destruction transitions in Kondo-limit mod-
els with SU(2) symmetry [20] or very large spin degener-
acy [21, 22]. It has been argued that the singular charge

response is important both for strange-metal behavior
[19] and emergent high-Tc superconductivity [23], mak-
ing it important to establish the generality of the phe-
nomenon. In the Kondo limit, which involves local mo-
ments that are necessarily particle-hole-symmetric, the
charge-channel singularity is ultimately traced to the fate
of the local moments, and thus develops in the same
energy range as the singular spin response [17, 24–27].
What happens beyond away from this symmetric limit is
an intriguing open question.

Recent experiments have pointed to a novel regime
of quantum-critical heavy-fermion metals with inher-
ent particle-hole asymmetry. The quasi-kagome mate-
rials CeRhSn and CeIrSn show strange-metal behavior
[28, 29], including a Grüneisen ratio (of the thermal ex-
pansion to the specific heat) that diverges with an un-
usual exponent [30], suggesting an entirely new univer-
sality class. Important clues about this quantum criti-
cality are that CeRhSn is mixed valent [31], implicating
the involvement of the charge degrees of freedom, but
the differing responses to in-plane and out-of-plane pres-
sure reveal local-moment degrees of freedom still to be
well-defined [32]. These systems motivate study of the
interplay between intersite RKKY interactions and the
local Kondo effect in entangled spin and charge chan-
nels. Among the important open questions are whether
there is a complete loss of quasiparticles, whether the
charge and spin responses are both singular and, if so,
whether the two singularities can acquire different en-
ergy scales, as indicated experimentally [32]. Mixed va-
lence is also expected to be important for other quantum-
critical heavy-fermion metals such as β-YbAlB4 [33] and,
likely, the 5f -electron system PuCoGa5 that supercon-
ducts with Tc = 18.5 K (a record high for f -electron sys-
tems) [34, 35]. Theoretically, the role of valence fluc-
tuations in heavy-fermion quantum criticality has been
treated within the Landau framework [36], but it has yet
to be systematically studied in the context of beyond-
Landau quantum criticality.

ar
X

iv
:2

20
6.

01
17

4v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

0 
Ju

n 
20

22



2

The relevant physics is captured by the Anderson lat-
tice model in the particle-hole-asymmetric regime, in-
corporating RKKY interactions between the local spin
degrees of freedom whose importance has been deduced
from the aforementioned anisotropic pressure response
of CeRhSn [32]. A particularly powerful approach to
elucidate the competing phases and quantum critical-
ity of this model is extended dynamical mean-field the-
ory [37–39], in which the Bose-Fermi Anderson (BFA)
model appears as an effective Hamiltonian [40]. In this
work, we study BFA models with a sub-ohmic bosonic-
bath spectrum and a fermionic band that has a power-
law pseudogap in its density of states. We realize an in-
herently particle-hole-asymmetric quantum-critical state
where quasiparticles are lost due to a critical destruc-
tion of Kondo screening, and demonstrate a dynamical
Planckian (~ω/kBT ) scaling of the charge response.

Model and solution methods. The BFA model is de-
scribed by the Hamiltonian

HBFA = εd
∑

σ

ndσ + Und↑nd↓

+
∑

k,σ

εkc
†
kσckσ +

V√
Nk

∑

k,σ

(d†σckσ + H.c.) (1)

+
∑

q,µ

ωqφ
†
qµφqµ +

∑

µ

gµS
µ
d√

Nq

∑

q

(φ†qµ + φ−qµ),

where d†σ creates an impurity electron with energy εd
and spin z component σ = ± 1

2 ≡ ↑, ↓; c†k,σ creates
a conduction electron with wave vector k, energy εk,
and spin z component σ; φ†qµ creates a boson in bath
µ ∈ {x, y, z} with wave vector q and energy ωq; and
Sµd =

∑
σ,σ′ d†σ

1
2τ

µ
σσ′dσ′ is Cartesian component µ of the

impurity spin, τµ being a Pauli matrix. Other quantities
entering Eq. (1) are the Coulomb interaction U between
electrons in the impurity level, the local hybridization
V between the impurity and conduction electrons, and
the coupling gµ between component µ of the impurity’s
spin and the corresponding bosonic bath. Nk and Nq

are the number of k and q points, respectively. We take
the electronic and bosonic densities of states to have the
power-law forms

ρf (ε) =
1

Nk

∑

k

δ(ε− εk) = ρ0,c

∣∣∣ ε
D

∣∣∣
r

c

( |ε|
D

)
, (2)

ρb(ω) =
1

Nq

∑

q

δ(ω − ωq) = ρ0,b

∣∣∣ ω
D

∣∣∣
s

Θ(ω) c

( |ω|
D

)
,

(3)

where D is an overall energy scale that we henceforth
set to 1, ρ0,b and ρ0,c are normalization factors, Θ(x)
is the Heaviside function, and c(x) is a cutoff func-
tion such that c(x) → 1 for x � 1 and c(x) → 0 for
x → ∞. The exponent r > 0 creates a power-law pseu-
dogap in the band density of states around the Fermi

energy ε = 0, while the exponent s < 1 describes a sub-
ohmic dissipative bath. The quantum-critical behavior of
the purely-fermionic power-law Anderson model [41–44]
has been extensively investigated [45–48], but the pre-
vious study of its Bose-Fermi counterpart [49] primarily
focused on the particle-hole-symmetric limit. Here we
present results obtained at particle-hole asymmetry using
the recently-developed continuous-time quantum Monte
Carlo (CTQMC) method for the spin-isotropic model [50]
(which built on the general method [51, 52]) as well as
that for the Ising-anisotropic model [49, 53], and using
the numerical renormalization-group (NRG) method [54]
for the anisotropic case.

This paper focuses on the illustrative case of powers
r = 0.6 and s = 0.9 with Γ0 = πρ0,cV

2 = 0.1, U = 0.03,
and εd 6= −U/2 leading to breaking of particle-hole sym-
metry. We study (a) an Ising-anisotropic model with
gµ = gδµ,z, describing bosons coupling to just one com-
ponent of the impurity spin, and (b) an SU(2)-symmetric
model with gµ = g involving three equivalent bosonic
baths µ = x, y, z. Both variants of the model have been
solved using CTQMC with εd = −0.05 and a cutoff func-
tion g(x) = (2π)−1/2 exp(−x2/2). We have also solved
the Ising version using the NRG with c(x) = Θ(1−x) and
discretization Λ = 9; in these calculations, we generally
chose εd ' −0.025 to achieve entry into the quantum-
critical regime at the lowest iteration number (or high-
est temperature) for the fixed U and Γ0 values. The
NRG and CTQMC are complementary in that the former
method can reliably compute static quantities arbitrar-
ily close to absolute temperature T = 0 and dynamics in
the regime |ω| & T [55], while the latter provides dynam-
ical properties over all ω/T and is practical to apply in
the SU(2)-symmetric case more relevant to many heavy-
fermion materials. We show that, despite their differing
cutoffs, CTQMC and the NRG yield a consistent descrip-
tion of universal critical properties.

Loss of quasiparticles. When the Kondo effect occurs,
the low-energy physics is characterized by quasiparticles
with small but nonzero weight. The quasiparticle weight
Z is proportional to the energy scale associated with
the development of the composite fermions. We start
by searching for a Kondo-destruction QCP in the Ising-
anisotropic BFA model using the NRG method. The
NRG provides a discrete approximation to the many-
body spectrum at a sequence of energy scales DN '
DΛ−N/2, describing the essential physics at tempera-
tures T ' DN for N = 0, 1, 2, . . .. We locate the
Kondo-destruction QCP by determining for trial values
of g whether the spectrum approaches, for iterations
N & N∗(g), that of the particle-hole-asymmetric Kondo
fixed point (for g < gc) or the bosonic-localized (Kondo-
destroyed) fixed point (for g > gc); see Fig. 1(a). A pro-
cess of bisection on the g axis increases N∗ and allows
gc to be determined to one part in 1012 or better. At gc,
the energy scale for the development of the well-defined
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FIG. 1. (a) A low-lying NRG eigenvalue EN vs odd iteration
number N for bosonic couplings g close to gc in the Ising BFA
model. For 9 . N . N∗(g), EN remains close to its value at
the Kondo-destruction QCP. (b) Binder cumulant U4,s(β, g)
vs g for the SU(2) BFA model. (c) Optimized scaling collapse
of the data from (b) using gc = 0.183(1), ν−1 = 0.684(15),
A = 0.56, and φ = 0.50. Legends are shared between (b), (c).

Kondo singlet has gone to zero. This means that the
quasiparticle weight Z vanishes. The loss of quasiparti-
cles is also captured in the NRG many-body spectrum at
gc [40], which no longer has a Fermi-liquid description.

The Kondo-destruction QCP can be located within the
CTQMC approach by constructing the Binder cumulant

U4,s = 〈M4
z 〉/〈M2

z 〉, where 〈Mn
z 〉 = 〈[β−1

∫ β
0
Szd(τ)dτ ]n〉

with β = 1/kBT . Near a QCP at g = gc, one expects
U4,s(β, g) = f(β1/ν(g − gc)/gc +Aβ−φ/ν), where f(x) is
a scaling function and Aβ−φ/ν represents the subleading
correction to scaling. The Ising-anisotropic model is ad-
dressed in Fig. S1, while Fig. 1(b) shows raw data for the
SU(2)-symmetric model. One can identify gc as the point
where U4,s vs g curves for different values of β cross at a
single point. Figure 1(c) presents the result of optimiz-
ing the scaling collapse of the data from Fig. 1(b) with
respect to trial values of gc, ν, A, and φ. As we will show
in the next section, there is no Pauli form at gc for ei-
ther the spin or charge susceptibility even at vanishingly
small temperatures. This provides an alternative way to
characterize the absence of Landau quasiparticles at the
Kondo-destruction QCP.

Singular charge and spin responses. To probe the crit-
ical properties, we first examine the static local spin and
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FIG. 2. Temperature dependence of static local susceptibil-
ities at the Kondo-destruction QCP: (a) spin and (b) charge
susceptibilities for the Ising and SU(2) BFA models, com-
puted using CTQMC. The SU(2) charge data are multiplied
by 1.5 for clarity. (c) and (d) respectively superimpose Ising
CTQMC spin and charge results on their NRG counterparts.
All data for εd = −0.05.

charge susceptibilities

χs(T ) = −∂〈S
z
d〉

∂h

∣∣∣∣
h=0

=

∫ β

0

〈Szd(τ)Szd(0)〉 dτ, (4)

χc(T ) = −∂〈nd〉
∂εd

=

∫ β

0

〈:nd(τ) : :nd(0) :〉 dτ, (5)

where :nd : =
∑
σ nd,σ − 〈

∑
σ nd,σ〉 and h is a local mag-

netic field that enters the Hamiltonian through a term
hSzd .

As shown in Fig. 2, at the QCP both χs and χc have
divergent temperature dependences:

χα(T ) = Cα T
−xα for α = s, c. (6)

CTQMC gives xs = 0.80(1) for both the Ising and SU(2)
BFA models [Fig. 2(a)], consistent within the numerical
uncertainty with the NRG result xs = 0.7906(1) for the
Ising BFA model. Figure 2(c), plotted over a much wider
temperature range, shows that CTQMC closely repro-
duces an NRG χs(T ) (calculated for the same values of
U , εd, and Γ0) that is already approaching its asymptotic
low-temperature behavior for T . 0.01D.

In the charge sector, CTQMC gives xc = 0.44(3) for
the Ising BFA model and xc = 0.47(2) for its SU(2) coun-
terpart [Fig. (2)(b)], whereas the NRG Ising BFA result
is xc = 0.1164(1). Figure 2(d) reveals that the CTQMC
and NRG data coincide closely, but χc(T ) reaches its
asymptotic regime only at temperatures below those ac-
cessible to CTQMC. This behavior can be understood
by considering corrections to Eq. (6), i.e., 1/χα(T ) =
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FIG. 3. Dynamical local spin susceptibility χs at the Kondo-
destruction QCP: (a) Real-frequency Ising NRG data at dif-
ferent temperatures T collapse when plotted vs ω/T . (b)
Imaginary-time SU(2) CTQMC data at different inverse tem-
peratures β collapse with dynamical exponent 0.2000(1) when
plotted vs πT/ sin(πτT ). Colors in (b) are as specified in Figs.
1(b) and 1(c).

C−1α T xα + (C ′α)−1 T x
′
α + . . ., where x′α > xα. The lead-

ing correction is smaller than ε times the asymptotic term
in Eq. (6) for temperatures T < |εC ′α/Cα|1/[x

′
α−xα]. The

NRG data yield x′s = 0.90(4), C ′s/Cs ≈ 30, x′c = 0.24(1),
and C ′c/Cc ≈ 0.4. The facts that x′c − xc � x′s − xs and
C ′c/Cc � C ′s/Cs make it necessary to go to much lower
temperatures to access the asymptotic behavior of χc.

Dynamical Planckian scaling of critical spin and charge
responses. We now consider the dynamical responses
that accompany the loss of quasiparticles at the Kondo-
destruction QCP, beginning with the dynamical spin
susceptibility, which in imaginary time is χs(τ, T ) =
〈Sz(τ)Sz(0)〉 − 〈Sz(0)〉2. Figure 3(a) of the Ising case
shows that real-frequency NRG data over 6 decades of
temperature and more than 8 decades of frequency col-
lapse onto a single curve, demonstrating a Planckian
(ω/T ) scaling [56]. For ω � T , χs(ω, T ) ∼ ω−xs up
to ω ' 0.01D, where deviations from scaling set in. Dy-
namical scaling also occurs in the SU(2) case, as demon-
strated by the imaginary-time dependence of the spin
susceptibility from CTQMC. The power-law dependence
on πT/ sin(πτT ), shown in Fig. 3(b), describes a scaling
collapse of the susceptibility in terms of ωn/T [40].

Finally, we turn to the principal focus of this work,
namely the dynamical critical charge response probed by
χc(τ, T ) = 〈:nd(τ) : :nd(0) :〉. Figure 4(a) shows the real-
frequency dynamics in the Ising case. NRG data span-
ning 6 decades of temperature and more than 10 decades
of frequency show a clear scaling collapse in terms of
ω/T . For ω � T , χc(ω, T ) ∼ ω−xc , but corrections to
scaling set in at lower frequencies than for χs(ω, T ), con-
sistent with the greater prominence of subleading terms
in χc(T ) [see Fig. 2(d)]. This result is also corroborated
by the CTQMC result for the SU(2) case, as shown in
Fig. 4(b). The imaginary-time dependence corresponds
to an ~ωn/kBT scaling of the dynamical charge suscepti-
bility. Moreover, the cutoff scale for the scaling region is
considerably different between the charge and spin sus-

FIG. 4. Dynamical local charge susceptibility χc at the
Kondo-destruction QCP: (a) Real-frequency Ising NRG data
at different temperatures T collapse when plotted vs ω/T .
(b) Imaginary-time SU(2) CTQMC data at different inverse
temperatures β collapse with dynamical exponent 0.5728(2)
when plotted vs πT/ sin(πτT ). Colors in (b) are as specified
in Figs. 1(b) and 1(c).

ceptibilities, demonstrating that the particle-hole asym-
metry has liberated the scaling of the charge response
from its spin counterpart.

Discussion. Several remarks are in order. First, our re-
sults show remarkable consistency between the quantum-
critical behavior in the particle-hole-asymmetric Bose-
Fermi Anderson model in the Ising and SU(2) cases.
This is to be contrasted with the particle-hole-symmetric
case, where a recent study shows that the SU(2) model
can have important differences from its Ising counter-
part [50]. The consistency between the two spin symme-
tries allows us to reach a very complete understanding of
the quantum-critical behavior, demonstrating the loss of
quasiparticles and uncovering dynamical Planckian scal-
ing. Our results motivate further studies for other com-
binations of the key parameters of the model: the pseu-
dogap power r of the fermionic band and the power-law
exponent s of the bosonic bath.

Second, the particle-hole-asymmetric Bose-Fermi An-
derson model represents, through the EDMFT frame-
work, an effective description of the Anderson lattice
model in the mixed-valent regime. Our finding of the
dynamical Planckian scaling of the charge responses at
the Kondo-destruction QCP implicates a singular charge
response in a new class of heavy-fermion QCPs. Opti-
cal conductivity measurements in the quantum-critical
regime of CeRhIn and CeIrIn offer an important avenue
for progress. Another way to elucidate this new regime of
heavy-fermion quantum criticality will be to ascertain the
degree to which the temperature and energy windows for
dynamical scaling are different between the charge and
spin channels.

In the heavy-fermion compound β-YbBAl4, evidence
has been advanced for a critical charge mode in the
quantum-critical regime [57]. Our work motivates the
examination of the associated charge responses as a func-
tion of both frequency and temperature.

Third, the Bose-Fermi Anderson model also charac-
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terizes the one-band Hubbard model with explicit inter-
site exchange interactions, i.e., the t-J-U Hubbard model
[38]. Away from half-filling, the model is particle-hole-
asymmetric. A similar effective model also arises when
the J interactions are randomly distributed [58, 59]. In
this way, our determination of the dynamical Planckian
scaling of the charge response sheds light on both the
singular density fluctuations, as observed in the electron
energy-loss spectrum (EELS) in Bi-2212 [60], and the re-
lated singularities as revealed by the ~ω/kBT scaling of
the optical conductivity [61].

Summary. We have shown that the Bose-Fermi An-
derson model serves as an exemplary setting for particle-
hole-asymmetric quantum criticality, in which the quasi-
particles are lost due to critical Kondo destruction. We
have uncovered a dynamical Planckian scaling arising
from the quasiparticle loss. Our results deepen un-
derstanding of the emerging physics of singular charge
response in beyond-Landau metallic quantum critical
points, and identify a new regime of heavy-fermion quan-
tum criticality in which to explore this physics. Further-
more, our work provides new insights into the emerging
charge-channel singularities near the optimal carrier dop-
ing of Mott-Hubbard systems.
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J. Phys. Soc. Jpn. 74, 1103 (2005).

[13] T. Park, F. Ronning, H. Q. Yuan, M. B. Salamon,
R. Movshovich, J. L. Sarrao, and J. D. Thompson, Na-
ture 440, 65 (2006).

[14] G. Knebel, D. Aoki, J.-P. Brison, and J. Flouquet, J.
Phys. Soc. Jpn. 77, 114704 (2008).

[15] J. Custers, K. A. Lorenzer, M. Müller, A. Prokofiev,
A. Sidorenko, H. Winkler, A. M. Strydom, Y. Shimura,
T. Sakakibara, R. Yu, Q. Si, and S. Paschen, Nat. Mater.
11, 189 (2012).

[16] V. Martelli, A. Cai, E. M. Nica, M. Taupin, A. Prokofiev,
C.-C. Liu, H.-H. Lai, R. Yu, K. Ingersent, R. Küchler,
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SUPPLEMENTAL MATERIAL

Dynamical Planckian scaling of charge response at a particle-hole-asymmetric
quantum critical point with Kondo destruction

Ananth Kandala, Haoyu Hu, Qimiao Si, and Kevin Ingersent

Background: Bose-Fermi Anderson Model via Extended Dynamical Mean-Field Theory

The Bose-Fermi Anderson (BFA) impurity model has been widely used as an effective model to study the heavy-
fermion systems [1]. It can be derived from the conventional Anderson lattice model via extended dynamical mean-field
theory (EDMFT) [2–4]. A generic Anderson lattice model with RKKY interactions can be described by the following
Hamiltonian

H =
∑

ij,σ

tijc
†
i,σcj,σ +

∑

i

V (c†i,σdi,σ + h.c.) +
∑

ij

IijSi · Sj + εd
∑

i,σ

d†i,σdi,σ + U
∑

i

ni,↑ni,↓ (S1)

where c†i,σ (d†i,σ) creates a conduction (localized) electron with spin σ at lattice site i, while tij and Iij are the
conduction-electron hopping and the RKKY local-moment exchange interaction, respectively; V is the on-site hy-
bridization between conduction and localized electrons, U is the Coulomb interaction between localized electrons on
the same site, and εd is the level energy of d electrons; Si =

∑
σ,σ′ d

†
i,σ

1
2σdi,σ′ and ni =

∑
σ d
†
i,σdi,σ are the d-electron

spin operator and number operator respectively. EDMFT maps the lattice model to a Bose-Fermi Anderson single-
impurity model [Eq. (1) of the main text] describing a representative lattice site where d electrons hybridize with
a fermionic band representing the effect of the conduction band and are coupled via their spin Sd to a dissipative
bosonic bath representing spin fluctuations caused by RKKY interactions with local moments at other lattice sites.

NRG Critical Spectrum

NRG results presented in the main paper and below were computed for discretization Λ = 9 using a basis of up to 8
bosons per site of the bosonic Wilson chain, and retaining up to 1000 many-body eigenstates after each iteration. The
hybridization width used in the calculations was ΓNRG = A(Λ, r)Γ, where Γ = 0.1D and A(Λ, r) is a multiplicative
factor—such that A(9, 0.6) ' 1.739—introduced to compensate for band discretization effects [5].

Figure 1(a) of the main paper shows the evolution with NRG iteration number N of the scaled energy EN of
a single NRG many-body eigenstate of the Ising-anisotropic particle-hole-asymmetric BFA model, as calculated for
different values of the bosonic coupling g near its critical value gc on the boundary between the Kondo and localized
(or Kondo-destroyed) phases. As g approaches gc, EN remains to ever higher iteration numbers close to a value
specific to the spectrum of the Kondo-destruction quantum critical point. Figure S1 shows the critical spectrum EN
vs N for all states EN < 2.5DN , where DN ' DΛ−N/2 is the characteristic energy scale of NRG iteration N . Since
|g/gc − 1| < 10−13, any appreciable flow away from the QCP toward the Kondo or localized phase sets in at an
iteration N > 41.
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FIG. S1. NRG critical spectrum of the Ising BFA model: scaled energy E(N)/DN vs odd iteration N for band exponent
r = 0.6, bath exponent s = 0.9, and impurity parameters U = 0.03D, εd ' −0.025D, Γ = 0.1D, and g = 0.3D.
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Additional CTQMC Results and Scaling Analysis

Figures 1, 3, and 4 of the main paper present CTQMC results for the BFA model with SU(2) spin symmetry. This
section presents the corresponding data for the Ising-anisotropic model, and provides additional discussion of the
dynamical scaling in both the Ising and SU(2) cases.

Figure S2(a) plots the raw Binder cumulant U4,s in the Ising BFA model, showing curves for different temperatures
crossing at a singe point. Figure S2(b) demonstrates the scaling collapse of the raw data using optimized parameters
specified in the legend.
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FIG. S2. (a) Binder cumulant U4,s(β, g) vs bosonic coupling g of the Ising data. (b) Scaling collapse of the same data optimized
by gc = 0.258(1), ν−1 = 0.655(18), A = 0.0, and φ = 0.0.
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FIG. S3. (a) Spin and (b) charge dynamical local susceptibilities at the Kondo-destruction QCP in the Ising BFA model,
showing scaling collapse of data for different inverse temperatures when plotted vs πT/ sin(πτT ). Colors are as specified in the
legends of Fig. S2.

Figure S3 shows the imaginary time dependence of the local spin and charge susceptibilities at the Kondo-destruction
QCP. As also seen for the SU(2) BFA model in Figs. 3(b) and 4(b) of the main paper, the Ising-BFA data for different
temperatures collapse onto the conformal scaling form

χα(τ, T ) = Φα

[
πT

sin(πτT )

]
for α = s, c, (S2)

with long-imaginary-time behavior χα ∼ τ−ηα . The fitted dynamical exponents, ηs = 0.1878(2) and ηc = 0.5130(14),
are respectively quite close to 1 − xs = 0.20(1) and ηc = 1 − xc = 0.53(2) computed over the same temperature
range. Similarly, at the SU(2)-symmetric QCP, the fitted values ηs = 0.2000(1) and ηc = 0.5728(2) are close to
1 − xs = 0.20(1) and 1 − xc = 0.56(3). The fact that ηc = 1 − xc over a temperature window where there are
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significant corrections to the critical static χc indicates that both the leading and subleading terms in the critical
χc(τ, T ) scale in terms of πT/ sin(πτT ). This imaginary-time scaling implies ω/T scaling in the frequency domain.
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