Quantum Criticality in Heavy Fermions: New Physics Near $T = 0$

Kevin Ingersent (U. of Florida)

Principal collaborators: Qimao Si & Matt Glossop (Rice U.)

Supported by NSF DMR-0312939

Zaanen, Science (2008)
Outline

1. Low-temperature metals: Fermi liquids vs non-Fermi liquids
2. Phase transitions: classical \((T > 0)\) vs quantum \((T = 0)\)
3. Heavy-fermion QPTs: The conventional picture
4. Heavy-fermion QPTs: Experimental puzzles and new ideas

CePd$_2$Si$_2$ (Mathur et al., 1998)
YbRh$_2$Si$_2$ (Custers et al., 2003)
1. Fermi Liquids and Non-Fermi Liquids
Fermi-Liquid Theory

Key assumptions (Landau, 1956):

• Start with noninteracting fermions labeled by \((p, \sigma)\).
• Adiabatically turn on (possibly strong) interactions.
• Particles close to \(\epsilon_F\) evolve into long-lived quasiparticles.
• Quasiparticles are fermions, also labeled by \((p, \sigma)\), but with renormalized parameters (mass, g-factor, energy, ...)
Heavy-Fermion Systems

• Metals containing 4f or 5f local moments.
• Local moments induce strong correlations between conduction electrons—a lattice version of the Kondo effect:

 [Diagram of electron and impurity with temperature T \ll T_K]

• For $T \ll T_K$, find Fermi-liquid behavior.
• Example: CeAl$_3$ (Andres et al., 1975)
 ▶ Remains a normal metal down to 10 mK.
 ▶ $\gamma = \lim_{T \to 0} C/T \approx 1600$ mJ/(mol Ce K2) \quad [\gamma(Cu,Ag,Au) \sim 0.7].
 ▶ For $T < 0.1$K, $\rho = \rho_0 + AT^2$.
Non-Fermi Liquids

- The Fermi liquid was long thought to be the generic low-temp. state of metals (barring the opening of a gap at ϵ_F).
- However, several classes of materials exhibit gapless charge excitations but properties inconsistent with a Fermi liquid.
- These materials realize fundamental new states of electronic matter.

1D fermion systems

- The quasiparticle concept is untenable in 1D.
- Low-energy excitations are bosonic density waves:

 - charge wave
 - spin wave
Non-Fermi Liquids (cont.)

Normal state of cuprate superconductors

- NFL signatures include a linear-in-T resistivity:

- The source of NFL behavior is still under debate:
 - Two-dimensionality (or even quasi-one-dimensionality)?
 - Proximity to a quantum phase transition? If so, which QPT?

![Graph showing resistivity vs. temperature for Bi$_2$Sr$_2$CaCu$_2$O$_8$]
Non-Fermi Liquids (cont.)

Heavy non-Fermi liquids

• A rich zoology of f-electron NFLs has emerged since 1991.
• For a review, see G. R. Stewart, Rev. Mod. Phys (2001, 2006).
• Typical properties:
 ‣ specific heat \(C/T \propto \log(T_0/T) \quad \text{c.f. Fermi liquid: } C/T = \gamma \propto m^*. \)
 ‣ resistivity \(\rho(T) - \rho(0) \propto AT^\alpha, \quad 1 \leq \alpha \leq 1.5. \)
• May arise from different sources in different materials:
 ‣ Disorder: broad distribution of energy scales, or fluctuations of rare regions (Griffiths phases).
 ‣ Local frustration (e.g., two-channel Kondo effect).
 ‣ Proximity to a quantum phase transition.
Heavy-Fermion Quantum Phase Transitions

• **Antiferromagnetic** QPT likely in
 - CeIn$_3$
 - CePd$_2$Si$_2$
 - CeCu$_2$R$_2$, R = Si, Ge
 - CeCu$_{6-x}$M$_x$, M = Au, Ag, Pd, Pt
 - YbRu$_2$Si$_2$

• **Ferromagnetic** QPT likely in
 - UGe$_2$
 - ZrZn$_2$
 - Sr$_3$Ru$_2$O$_7$
 - MnSi

CePd$_2$Si$_2$ (Mathur et al., 1998)
2. Quantum Phase Transitions

- A QPT separates quantum-mechanical ground states (A and B) distinguished by an order parameter ϕ such that $\phi_A \neq 0, \phi_B = 0$.
- The QPT is accessed via a nonthermal control parameter g.
 We will focus on continuous QPTs, where $\Delta \phi = 0$ at $g = g_c$.
- Examples:

 heavy fermions

 $\text{CeCu}_{6-x}\text{Au}_x$

 (von Löhneysen, 1996)
Quantum Phase Transitions (cont.)

fractional quantum Hall effect

(Tsui et al., 1990)

Note: Experiments were performed at finite T!
Classical ($T > 0$) vs Quantum ($T = 0$) Phase Transitions

- A **classical** phase transition between phases A and B occurs at the temperature T_c at which $F_A = F_B$ or $E_A - T_c S_A = E_B - T_c S_B$.

 The free energy F comes from a trace over configuration space:

 $$Z_{CM} = \exp(-\beta F) = \text{Tr} \exp(-\beta H), \quad \beta = 1/k_B T.$$

 ⇒ **Don’t need to know the dynamics** (equations of motion).

- The **quantum-mechanical** free energy is a trace over a basis:

 $$Z_{QM} = \exp(-\beta F) = \sum_n \langle n | \exp(-\beta H) | n \rangle, \quad \beta = 1/k_B T.$$

 Since $\exp(-iHt/\hbar)$ is the quantum-mechanical propagator,

 ⇒ $\exp(-\beta H)$ propagates the system in imaginary time;

 ⇒ Z_{QM} is the sum over all transition amplitudes for the system to return to its initial state after an imaginary time $\tau = -\imath \hbar \beta$.

 “**Statics and dynamics are inextricably connected**” (J. Hertz, 1976).
Quantum to Classical Mapping

- Z_{QM} in d dimensions $\sim Z_{CM}$ for a system in $D = d + 1$ dimensions, with finite extent $L_\tau = \hbar / k_B T$ along the imaginary-time direction.

- The control parameter g controls the strength of fluctuation—plays the role of temperature in the effective classical model.

- As $T \to 0$, $L_\tau \to \infty$.

- The mapping of a d-dimensional quantum system to a $(d+1)$-dimensional classical system becomes rigorous in the limit of long length scales, where can use a continuum (field theory) description.

- The control parameter g controls the strength of fluctuation—plays the role of temperature in the effective classical model.
Role of Dimensionality: Classical Transitions

• Spatial fluctuations \(\phi(\mathbf{r}) \to \phi + \delta\phi(\mathbf{r}) \)
 become less important with increasing \(D \).
• The upper critical dimension \(D_u \) plays a key role.
• For \(D > D_u \),
 › fluctuations \(\delta\phi \) are relatively unimportant;
 › they can be taken to be independent (Gaussian) as \(T \to T_c \).
 › mean-field theory (\(\delta\phi = 0 \)) gives the correct exponents.
• For \(D < D_u \),
 › interactions between fluctuations grow as \(T \to T_c \).
 › need numerics or more sophisticated theory (e.g., RG).
 › exponents can take anomalous (non-mean-field) values.
Role of Dimensionality: Quantum Transitions

• At a continuous QPT, the spatial and temporal correlation lengths diverge, but not necessarily at the same rate:
 \[\xi^0 \sim |g - g_c|^{-\nu}, \quad \xi_x^0 \sim |g - g_c|^{-z\nu} \]
 where \(z \) is the dynamical exponent.

• If \(z = 1 \) (e.g., the Ising ferromagnet)

 • the effective \((d+1)\)-dimensional classical model is isotropic;

 • the quantum and classical critical points belong to the same universality class;

 • the upper critical dimension for the quantum model is \(d_u = D_u - 1 \).

• If \(z > 1 \) (e.g., \(z = 2 \) for heavy-fermion antiferromagnets)

 • the effective classical model is anisotropic;

 • the critical exponents differ from those for the isotropic case;

 • the upper critical dimension for the quantum model is \(d_u = D_u - z \).
Finite-Temperature Manifestations of a QPT

• At $T > 0$, the finite $L_\tau = \hbar / k_B T$ cuts off the divergence of ξ_τ^0:

$$g = g_1$$

• This may kill the phase transition (low d) or convert it to a CPT.

$$g = g_2$$
Finite-Temperature Manifestations of a QPT (cont.)

- Physical properties cross over as functions of L_t / ξ_t^0 and $T / \omega(\xi^0)$ from quantum to thermal behavior, e.g., for $d > \max(2, 4 - z)$,

- The thermal ("quantum critical") regimes at $T > 0$ provide a signature of the QPT located at $T = 0$.

- For more on QPTs, see: S. L. Sondhi, Rev. Mod. Phys. (1997); S. Sachdev, *Quantum Phase Transitions* (Cambridge, 1999).
3. Heavy-Fermion QPTs: The Conventional Picture

- Metals containing 4f or 5f moments exhibit conflicting tendencies:

 \[H = \sum_{k, \sigma} \epsilon_k c_{k\sigma}^\dagger c_{k\sigma} + J \sum_i c_{i\sigma}^\dagger \frac{1}{2} \tau_{\sigma\sigma'} c_{i\sigma'} \cdot S_i + \frac{1}{2} \sum_{i,j} I_{ij} S_i \cdot S_j \]

- The competition is captured by the Kondo lattice model

 - In the paramagnetic phase, the Kondo effect wins. Residual interactions among quasiparticles can lead to …
 - Cooper instability (e.g., CeCu$_2$Si$_2$, UPt$_3$, UBe$_{13}$, CeCoIn$_5$).
 - spin-density-wave (SDW) instability (examples will follow).
SDW Theory for Antiferromagnetic QPTs

- The QPT corresponds to an SDW instability of the Fermi liquid.
- The effective Landau-Ginzburg-Wilson functional involves only the magnetic order parameter (integrate out fermions):
 \[\Phi[\Psi] = \frac{1}{2} \sum_{\mathbf{q}, \omega_n} \left[\delta(g) + |\mathbf{q} - \mathbf{Q}|^2 + |\omega_n| \tau \right]|\Psi(\mathbf{q}, i\omega_n)|^2 + \frac{1}{4} \mu \Psi \Psi \Psi \Psi \]
- The particle-hole continuum strongly damps the modes around the ordering wave vector \(\mathbf{q} = \mathbf{Q} \). The dynamical exponent is \(z = 2 \).
- Since \(D_u = 4 \) for the effective classical theory, \(d_u = 4 - z = 2 \).
 \[\Rightarrow \text{For } d = 2 \ [d = 3], \text{ system is at [above] its upper critical dimension.} \]
- Renormalization-group analysis (Moriya, 1973; Hertz, 1976, Millis, 1993) gives as quantum critical behaviors at \(g = g_c \)
 \[d = 2 : \quad \Delta C / T \sim \ln(T_0 / T), \quad \Delta \rho \sim T. \]
 \[d = 3 : \quad \Delta C / T \sim \gamma - a\sqrt{T}, \quad \Delta \rho \sim T^{3/2}. \]
SDW Antiferromagnetic QPTs: Candidate Materials

- **CeCu$_2$Si$_2$:**

 - Fits the SDW theory for $d = 3$: $\Delta C / T \sim \gamma - a\sqrt{T}$, $\Delta \rho \sim T^{3/2}$.
 - Same $\rho(T)$ is seen in CeIn$_3$.

(Steglich et al., 1996, 1998)
SDW Antiferromagnetic QPTs: Candidate Materials

- **CePd$_2$Si$_2$:**

 - At $p = p_c$, $\Delta \rho \sim T^{1.2}$.

 - Close to the SDW theory for $d = 2$:
 \[
 \Delta C / T \sim \ln\left(T_0 / T \right), \quad \Delta \rho \sim T.
 \]

 (Mathur et al., 1998)
4. Heavy-Fermion QPTs: Experimental Puzzles & New Ideas

The Curious Case of CeCu$_{6-x}$Au$_x$

- Neel temperature vanishes at $x_c \approx 0.1$.

- At $x = x_c$, $C/T \sim \log(T_0/T)$.

(von Löhneysen, 1996)
CeCu$_{6-x}$Au$_x$ (cont.)

- Also at $x = x_c$,
 $$\rho(T) \approx \rho(0) + AT.$$

- For $x < x_c$ and $x > x_c$, recover the Fermi-liquid form
 $$\rho(T) \approx \rho(0) + AT^2.$$

(von Löhneysen, 1996)
Neutron-scattering and magnetization data can be collapsed onto the form

\[\chi = \frac{C}{f(q) + (\sqrt{T^2 + H^2} - i\omega)^\alpha}, \]

where \(\alpha = 0.75 \pm 0.05 \).

(Schröder et al., 2001)
The Puzzle of $\text{CeCu}_{6-x}\text{Au}_x$

- The form $C\chi^{-1} = f(q) + \left(\sqrt{T^2 + H^2} - ia\omega\right)^\alpha$, $\alpha = 0.75 \pm 0.05$
 is fundamentally incompatible with the standard SDW theory, which should be at or above its upper critical dimension:
 - The ω dependence exhibits a critical exponent $\alpha < 1$:
 - For $d \geq d_u$, expect $\alpha = 1$.
 - Expect anomalous exponents only for $d < d_u$.
 - ω and T enter with the same exponent α:
 - For $d \geq d_u$, expect $\omega \sim T^{d/z}$.
 - Expect “ω/T” scaling only for $d \leq d_u$.
- Suspicion falls on the validity of integrating out the fermions from
 $$H = \sum_{k,\sigma} \epsilon_k c_k^{\dagger} c_{k\sigma} + J \sum_i c_i^{\dagger} \frac{1}{2} \tau_{\sigma\sigma'} c_{i\sigma'} \cdot S_i + \frac{1}{2} \sum_{i,j} I_{ij} S_i \cdot S_j$$
 to get
 $$\Phi[\Psi] = \frac{1}{2} \sum_{q,i\omega_n} \left[\delta(g) + |q - Q|^2 + |\omega_n| \tau \right] |\Psi(q,i\omega_n)|^2 + \frac{1}{4} u \Psi \Psi \Psi \Psi$$
 (e.g., Abanov and Chubukov, 2004).
Proposals to Explain the CeCu$_{6-x}$Au$_x$ Puzzle

- **Reduced dimensionality** ($d = 2$) (Rosch et al.)
 - Spin fluctuations in CeCu$_{6-x}$Au$_x$ are **quasi-two-dimensional**.
 - Can account for ω/ T scaling but not for $\alpha < 1$.

- **Breakdown of quasiparticles** at the QPT (Coleman; Si and K.I.)
 - Builds on fact that the **local** susceptibility $\chi_{\text{loc}}(\omega) = \sum_{q=Q} \chi(q, \omega)$ diverges with the same exponent α.
 - Suggests that local moments are becoming unscreened as approach the QPT from the paramagnetic side—**bicriticality**.
 - May involve novel phase transitions and/or supersymmetry.

- **Fractionalization** (Senthil et al., Pépin et al.)
 - Quasiparticles break into **spinons** and **gauge excitations**.
 - Magnetism is incidental to the destruction of the quasiparticles.
One Scenario: “Local Criticality”

- Fermi-liquid temperature T^* vanishes just at the SDW instability ⇒ local moments reappear, and χ_{loc} diverges.
- Critical local fluctuations couple to extended critical modes ⇒ the critical point is interacting, can have anomalous exponents.
- This would constitute a new type of phase transition.
Microscopic Approach: EDMFT

- **Extended dynamical mean-field theory** includes some spatial fluctuations [Si and Smith (1996), Chitra & Kotliar (2000)].

- Maps the Kondo **lattice model**

 \[
 H = \sum_{k,\sigma} \epsilon_k c_{k\sigma}^\dagger c_{k\sigma} + J \sum_i c_{i\sigma}^\dagger \frac{1}{2} \tau_{\sigma\sigma'} c_{i\sigma'} \cdot S_i + \frac{1}{2} \sum_{i,j} I_{ij} S_i \cdot S_j
 \]

 to a Bose-Fermi Kondo **impurity model**:

 \[
 H = \sum_{k,\sigma} \epsilon_k c_{k\sigma}^\dagger c_{k\sigma} + J c_{0\sigma}^\dagger \frac{1}{2} \tau_{\sigma\sigma'} c_{0\sigma'} \cdot S + \sum_q \omega_q \phi_q^\dagger \cdot \phi_q + g \left(\phi_0 + \phi_0^\dagger \right) \cdot S
 \]

 - Fermionic band accounts for **local dynamical correlations**.
 - Dissipative baths represent a **fluctuating magnetic field** due to other local moments.
 - Band and bath densities of states must be found **self-consistently**.
EDMFT for the Ising-Anisotropic Kondo Model

- For easy-axis systems, use the Ising-anisotropic BFK model:

$$H = \sum_{k, \sigma} \varepsilon_k c_{k\sigma}^\dagger c_{k\sigma} + J c_{0\sigma}^\dagger \frac{1}{2} \tau_{\sigma\sigma'} c_{0\sigma'} \cdot S + \sum_q \omega_{q} \phi_q^\dagger \phi_q + g(\phi_0 + \phi_0^\dagger)S^z + h_{\text{loc}} S^z$$

- In EDMFT, the self-energies entering the lattice functions

$$G(k, \omega) = [\omega - \varepsilon_k - \Sigma(k, \omega)]^{-1}$$

$$\chi(q, \omega) = [M(q, \omega) + I_q]^{-1}$$

where the “RKKY density of states,”

$$\rho_I(\varepsilon) = \sum_q \delta(\varepsilon - I_q),$$

are approximated by $\Sigma(\omega)$ and $M(\omega)$ for the impurity problem.

- Self consistency requires

$$\chi_{\text{loc}}(\omega) \equiv \sum_q \chi(q, \omega) = \int d\varepsilon \frac{\rho_I(\varepsilon)}{M(\omega) + \varepsilon}.$$

The form of $\rho_I(\varepsilon)$ near $\varepsilon = I_Q$ turns out to be crucial.
What is the Nature of the QPT in EDMFT?

• EDMFT equations have been solved using various impurity solvers.
• ϵ-expansion finds two types of QPT (Si et al., 2001, 2003):
 ‣ conventional spin-density-wave type for 3D spin fluctuations;
 ‣ locally critical QPT for 2D spin fluctuations—reproduces some features of CeCu$_{6-x}$Au$_x$ and YbRh$_2$Si$_2$, but corresponds to $\epsilon = 1^{-}$.
• Quantum Monte Carlo yields conflicting results:
 ‣ Anderson lattice has no locally critical QPT; transition is 1st order (Sun & Kotliar, 2003).
 ‣ Kondo lattice has 1st order transition at $T > 0$, but a locally critical QPT at $T = 0$ (Grempel & Si, 2003; Zhu et al., 2004).
• To resolve the discrepancy, we have extended Wilson’s numerical RG method to get nonperturbative $T = 0$ solutions (Glossop & Kl, 2007).
Self-Consistent EDMFT Solutions at $T = 0$

- At the gross level, 3D and 2D spin fluctuations yield similar results:

 - To within numerical resolution, the QPT is continuous in both cases.

- To within numerical resolution, the QPT is continuous in both cases.
EDMFT: Static Self-Consistency

- Differences between 3D and 2D show up only very near the QPT: self-consistency requires

\[\chi_{\text{loc}}(0) = \int d\varepsilon \frac{\rho_1(\varepsilon)}{\chi^{-1}(Q,0) - I_Q + \varepsilon} \]

- Bosonic NRG can get closer to the QPT (Zhu et al., 2007).
EDMFT: Anomalous Exponent in the Dynamics

- Logarithmic divergence in $\chi'_{\text{loc}}(\omega \rightarrow 0)$ implies an anomalous exponent
 $$\alpha = 0.78(4)$$
 in the lattice susceptibility.
- Compares well with the experimental value in $\text{CeCu}_{6-x}\text{Au}_x$:
 $$\alpha \approx 0.75.$$
• Sensitivity to the dimensionality of the spin fluctuations.
• A jump in the Fermi-surface volume at the QPT (dHvA).
• A jump in the carrier concentration at the QPT (Hall coefficient).
• A divergence of the Gruneisen ratio \(\beta / C_p \) (\(\beta \) = thermal exp.).
• \(T \)-independent (non-Korringa) spin-lattice relaxation (NMR, \(\mu \)SR).
Local Criticality: Evidence from YbRh$_2$Si$_2$

Does R_H jump at the QPT?

(Kuchler et al., 2003)

Gruneisen ratio diverges in a way consistent with local criticality.

(Paschcn et al., 2004)
Summary

• Many examples are now known of systems that deviate from the Fermi-liquid paradigm for low-temperature metals.
• Among the diverse sources of non-Fermi-liquid physics, quantum phase transitions (QPTs) form an interesting sub-class.
• Heavy-fermion systems allow systematic investigation of QPTs.
• Evidence is emerging for novel physics in certain materials.
• Possible theoretical explanations include
 ▶ local criticality: a new universality class of phase transition;
 ▶ supersymmetry: bosonic & fermionic spin character at the QPT;
 ▶ fractionalization: spin-charge separation due to topological order.
• Much work remains to sort out these possibilities! There is a “complete lack of theoretical understanding of the quantum critical states found in the heavy fermion metals” (Krüger & Zaanen, 4/14).