Kinematics of Circular Motion

Let us analyze the kinematics of a body moving in the $x y$ plane around the perimeter of a circle of radius r centered on the origin.

- We can describe the body's position at time t using the angle ϕ measured in a counterclockwise direction from the positive x axis. If ϕ is specified in radians, then the arc length round the perimeter of the circle in a clockwise direction from the positive x axis to the body is

$$
s=r \phi
$$

and the body's speed is

$$
v=\frac{d s}{d t}=r \frac{d \phi}{d t} .
$$

- The body's position can be also described by a vector \mathbf{r} having Cartesian coordinates

$$
x=r \cos \phi, \quad y=r \sin \phi
$$

Differentiating with respect to time,

$$
v_{x}=-r \sin \phi \frac{d \phi}{d t}=-v \sin \phi, \quad v_{y}=r \cos \phi \frac{d \phi}{d t}=v \cos \phi
$$

Thus, the body's velocity is

$$
\mathbf{v}=v \hat{\mathbf{t}}
$$

where the tangential unit vector

$$
\hat{\mathbf{t}}=(-\sin \phi, \cos \phi)
$$

is a vector of length one perpendicular to the radial unit vector

$$
\hat{\mathbf{r}}=(\cos \phi, \sin \phi)
$$

- Differentiating again with respect to time,

$$
\begin{aligned}
& a_{x}=-v \cos \phi \frac{d \phi}{d t}-\frac{d v}{d t} \sin \phi=-\frac{v^{2}}{r} \cos \phi-\frac{d v}{d t} \sin \phi \\
& a_{y}=-v \sin \phi \frac{d \phi}{d t}+\frac{d v}{d t} \cos \phi=-\frac{v^{2}}{r} \sin \phi+\frac{d v}{d t} \cos \phi
\end{aligned}
$$

Thus, the body's acceleration is

$$
\mathbf{a}=-\frac{v^{2}}{r} \hat{\mathbf{r}}+\frac{d v}{d t} \hat{\mathbf{t}} .
$$

The acceleration has a radial component $-v^{2} / r$ and a tangential component $d v / d t$.

- In the special case of uniform circular motion, the body's speed is constant and the acceleration $\mathbf{a}=-\left(v^{2} / r\right) \hat{\mathbf{r}}$ is purely radial.

