PHY 2060 Spring 2008 K. Ingersent
Kinematics of Circular Motion

Let us analyze the kinematics of a body moving in the xy plane around the perimeter of a
circle of radius r centered on the origin.

e We can describe the body’s position at time ¢
using the angle ¢ measured in a counterclock-

wise direction from the positive z axis. If ¢ is Y A
specified in radians, then the arc length round t
the perimeter of the circle in a clockwise direc-
tion from the positive x axis to the body is "
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and the body’s speed is
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e The body’s position can be also described by a vector r having Cartesian coordinates
T = 1Cos @, y = rsin ¢.

Differentiating with respect to time,
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Thus, the body’s velocity is

where the tangential unit vector

t = (—sin¢, cos¢)

is a vector of length one perpendicular to the radial unit vector
r = (cos ¢, sin@).

e Differentiating again with respect to time,
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Thus, the body’s acceleration is
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The acceleration has a radial component —v?/r and a tangential component dv/dt.

e In the special case of uniform circular motion, the body’s speed is constant and the
acceleration a = —(v?/r) t is purely radial.



