
PHY 3513 Fall 2000 – Homework 1

Due at the start of class on Friday, September 8.

Answer all questions. To obtain full credit, you must explain your reasoning and show all
working. Please write neatly and include your name on the front page of your answers.

1. (a) Suppose that 10.0 g of ice initially at −20.0 ◦C is dropped into 30.0 g of water
initially at 40.0 ◦C. Assuming that the combined ice-water system is closed (i.e., no
material or heat crosses its boundaries and no work is done by/on the system), what
is the final equilibrium state? Express your final answer in roughly the same format
as the following sample answers (all of which are physically nonsensical): “40.0 g of ice
at −30.0 ◦C,” “5.0 g of ice at −20.0 ◦C plus 35.0 g of water at 5.0 ◦C,” and “20.0 g of
water and 20.0 g of steam, both at 100 ◦C.”

(b) Redo part (a) for a situation in which 10.0 g of ice initially at −20.0 ◦C is brought
into contact with 30.0 g of steam initially at 110.0 ◦C.

Data: cice = 2220 J kg−1K−1, cwater = 4190 J kg−1K−1, csteam = 1520 J kg−1K−1,
LF = 333× 103 J kg−1, LV = 2256× 103 J kg−1, Tmelt = 0 ◦C, Tboil = 100 ◦C.

2. As mentioned in class, the molar heat capacity cmol of most substances approaches
a universal constant value at high temperatures. At low temperatures, however, cmol

varies greatly from material to material, and is also temperature dependent. For many
metals, the molar heat capacity is well-described by the low-temperature form

cmol = γ T + α T 3, (1)

where T is the absolute temperature; both γ and α depend on the metal in question.

Integrate the equation
d̄Q = n cmol dT,

where n is the number of moles, to find the total heat Q when 0.4 mol of a metal
described by Eq. (1) is cooled from 25 K to 12 K. Take γ = 0.9 mJ mol−1K−2 and
α = 0.2 mJ mol−1K−4.

3. A certain sample of gas is sealed inside a cylinder with a movable piston. The pressure
P , the volume V , and the temperature T of the gas are related by the equation of state

P (V − a) +
c

V − b
= d T. (2)

Here a, b, c, and d are positive constants.

Calculate the total work done by the gas on expanding from volume V1 to V2 > V1

when the expansion is performed in each of three different ways specified by the various
constraints specified in (a)–(c) below.

(a) Isobaric: P = P0, a constant.

(c) Isothermal: T = T0, a constant.

(c) Isochoric: V = V1 = V2.

Hint: You may find it convenient to use partial fractions to re-express
1

(V − a)(V − b)
.



4. One mole of an ideal gas undergoes the following three-step cycle, starting from pressure
P0 and volume V0:
(i) An isochoric cooling during which the absolute temperature of the gas is halved.
(ii) An isothermal expansion to a volume V2.
(iii) An adiabatic return to the starting point of the cycle.

(a) Draw a P -V diagram (horizontal axis = V ) showing the path followed by the system
as it undergoes this closed thermodynamic cycle. Be sure to label the three steps (i, ii,
and iii) and draw arrows to show the direction that the system moves on the diagram.

(b) Calculate the value of V2 in terms of other variables introduced above and the
adiabatic exponent γ.

(c) Calculate the work performed by the system during each step of the cycle and hence
the total work performed during the complete cycle.

(d) Evaluate the lowest temperature reached during the cycle and the total work per-
formed, given that P0 = 2.0× 105 Pa and V0 = 1.0× 10−2 m3. Assume γ = 5/3.

Comments

• Problem 1 is rather unusual for a physics problem. Usually, you are encouraged to
derive a purely purely algebraic equation for the quantity or quantities that you are
asked to find; you are advised to plug in numerical values for algebraic symbols on
the right hand side of your equation(s) only at the very end of the calculation. This
method has significant advantages: the algebraic result can be more readily checked for
dimensional consistency, and you can also test your equation in various special cases
(such as when certain input quantities vanish); once verified, the same equation can be
applied repeatedly by substituting different sets of numerical data. For these reasons,
the “all-algebra” method should be used wherever possible.

Problem 1 provides an example where this approach doesn’t work. In order to get to
the correct answer, you have to pose and answer a series of qualitative questions such
as “Does the ice warm up to 0 ◦C before the water cools to 0 ◦C?” or “Does all the
water freeze before the ice reaches 0 ◦C?” The sequence of questions that you face will
depend on the answers to previous questions; rather than waiting until the end of the
problem to plug in numbers, you have to use numbers at every stage of the decision
process in order to know which question to ask next.

• Problems 2 and 3 are designed mainly to test your understanding of fundamental
thermodynamic quantities (including their all-important signs) and your ability to
apply integration in a physics context. The integrals in Problem 2 should be easy for
you, while those in Problem 3 may be a little harder. You will be expected to be able
to do integrals such as these throughout the course, both as part of homework and
during assembly exams.

• Problem 4 introduces the idea of a thermodynamic cycle. We will spend a lot of time
thinking about cycles in Callen Ch. 4.


