
PHY 3513 Fall 2000 – Information Concerning Mid-Term Exam 1

The first mid-term will take place between 7:00 and 9:00 pm on Tuesday October 17. The
exam will be held in room NPB 1220.

The exam will consist of three questions carrying roughly equal weight (e.g., 40%, 30%, and
30%). One question will be devoted to each of the following areas:
• Introductory material on heat, work, and energy; their relation via the First Law; heat

capacities and latent heats; application of the preceding ideas to ideal gases; the kinetic
theory of gases; entropy and the second law. The statistical interpretation of entropy will
not be tested.

• Callen Chapter 1, Sections 3–6, and 8–10: Extensive variables, systems and walls, equi-
librium states, the entropy postulates.

• Callen Chapter 2, Sections 1–8: Intensive variables, equations of state, thermal, mechanical
and diffusional equilibrium between subsystems.

You should bring a scientific calculator and pens/pencils to the exam. You will be provided
with a formula sheet (attached); no other written aids will be allowed.

Below is the first PHY 3513 mid-term from 1999. The format of the exam is slightly different
(four problems instead of three), but the type of questions is representative of those that
will appear this time.

PHY 3513 Fall 1999 – Mid-Term Exam 1

This exam lasts 2 hours. Answer all four questions, which carry equal weight. To obtain full
credit, please explain your reasoning and show all working. Please write neatly and include
your name on the front page of your answers.

You must not seek or obtain help on this exam from anyone other than the
proctor, nor must you assist anyone else.

1. The low-temperature heat capacity of a certain sample of solid argon is described by
the formula CAr = αT 3. Over the same temperature range, the heat capacity of a piece
of potassium is given by CK = γT + βT 3. The constants α, β, and γ are all positive.

Initially, the argon and potassium are held at temperatures TAr and TK, respectively.
Then the two samples are brought into thermal contact and allowed to equilibrate.

(a) Obtain an expression for Tf , the final temperature of the argon and the potassium,
assuming that the two samples together form a closed system. [Hint: During the
calculation, you should solve a quadratic equation for T 2

f . Be sure to specify which
root of the equation is the physical one.]

(b) Evaluate Tf , given that α = 3.0 × 10−3 J/K4, β = 2.1 × 10−3 J/K4, γ = 2.6 ×
10−3 J/K2, TAr = 0.35 K, and TK = 1.6 K.

2. A certain gas of non-interacting molecules satisfies the pair of equations u = cRT and
P (v − b) = RT , where u is the molar internal energy, v is the molar volume, T is the
absolute temperature, P is the absolute pressure, R is the gas constant, and c is a
dimensionless constant greater than unity. The second equation can be derived from



kinetic theory, treating each molecule not as a point-like particle, but rather as an
object having a finite volume of order b/NA (where NA is Avogadro’s constant).

Calculate the increase in the molar entropy of a fixed amount of this gas during each
of the following processes:

(a) A change in temperature from Ti to Tf at constant molar volume v0.

(b) A change in temperature from Ti to Tf at constant pressure P0.

(c) A change in molar volume from vi to vf at constant temperature T0.

The only algebraic variables in your answers should be the ones mentioned in the
problem, i.e., don’t introduce new variables such as Pi or Pf .

3. Suppose that the following equation has been proposed as the fundamental equation
for a one-component simple thermodynamic system:

U(S, V,N) = NV eS. (1)

(a) Check whether the equation has the correct extensivity property. Remedy any
deficiences by inserting powers of N as necessary on the right hand side of the
equation.

(b) Check whether the equation (as corrected above, if necessary) is dimensionally
correct. Remedy any deficiencies by inserting powers of R [units: J/(mol·K)],
θ [units: K], and v0 [units: m3/mol] as necessary on the right hand side of the
equation.

(c) Check whether the equation (as corrected above, if necessary) satisfies each of the
remaining requirements of the entropy postulates.

(d) If you find any violations of the entropy postulates, make the smallest possible
change you can find to bring the equation into compliance, while maintaining
extensivity and dimensional correctness. [Since the “smallest possible change” is
subjective, there may not be a unique answer to this part. However, your final
version of the fundamental equation should be clearly derived from Eq. (1).]

4. A closed system is composed of two simple subsystems, labeled A and B. A is a simple
ideal gas, described by

SA = NAs0 + NAR ln

[(
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U0

)c (VA

V0

)(
N0

NA

)c+1
]
, (2)

and B is a cavity containing electromagnetic radiation described by

SB =
4

3

(
b U3

BVB

)1/4
. (3)

(a) Write down the equations of state for the temperature and pressure of each sub-
system.

(b) Initially the subsystems are separated by an adiabatic, rigid, impermeable barrier.
Then the barrier is replaced by one that is diathermal, movable, and impermeable
and the combined system is allowed to reach equilibrium. Derive (and simplify,
but do not attempt to solve) equations for UA,f and VA,f , the final internal energy
and volume of A, as functions of the total internal energy U , the total volume V ,
and constants introduced in Eqs. (2) and (3).
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General equations

• Heat into system: d̄Q
QS
= TdS (“QS” means quasistatic)

• Work done on system: d̄W
QS
= −PdV +

∑
j µjdNj + . . . + FkdXk + . . .

• First Law: dU = d̄Q +d̄W

• Second Law: dStot ≥ 0 (“=” for reversible processes)

Entropy postulates

• Entropy is additive over subsystems: S =
∑

α S(α)(U (α), V (α), N
(α)
1 , . . .).

• Within each subsystem, the entropy is . . .
◦ an extensive function of extensive variables:

S(α)(λU (α), λV (α), λN
(α)
1 , . . .) = λS(α)(U (α), V (α), N

(α)
1 , . . .);

◦ continuous, differentiable, and monotonically increasing with respect to energy:
(∂S(α)/∂U (α))

V (α), N
(α)
1 , ...

> 0;

◦ non-negative, and zero only in the state for which (∂U (α)/∂S(α))
V (α), N

(α)
1 , ...

= 0.

• At thermodynamic equilibrium, S is maximized subject to whatever constraints are applied
to the system.

Intensive parameters

• Temperature: T =

(
∂U

∂S

)
V,N1,...

= 1

/(
∂S

∂U

)
V,N1,...

• Pressure: P = −
(

∂U

∂V

)
S,N1,...

= T

(
∂S

∂V

)
U,N1,...

• Molar chemical potential: µk =

(
∂U

∂Nk

)
S,V,N1,...

= −T

(
∂S

∂Nk

)
U,V,N1,...

Simple one-component systems

• Molar entropy, energy, volume: s = S/N, u = U/N, v = V/N

• First Law: du = T ds− P dv

• Constant-X molar heat cap.: cX =
1

N

(
d̄Q

dT

)
X,N

=
T

N

(
∂S

∂T

)
X,N

(e.g., X = V , P )

• Molar latent heat: l = ±
(

d̄Q

dN

)
T

during a change of phase

Ideal gases

• Equation of state: PV = NRT = NmoleculeskBT

• Internal energy: U = cNRT (c ≥ 3
2
)

• Adiabatic processes: PV γ = constant

• Kinetic theory: PV = 1
3
NMv2

rms = 1
3
Nmoleculesmv2

rms


